

Autonomous College Permanently Affiliated to VTU, Approved by AICTE & UGC
Accredited by NAAC with 'A' Grade, Accredited by NBA
New Horizon Knowlegde Park, Ring Road, Bellandur Post, Near Marathalli, Bangalore - 560103, INDIA

DEPARTMENT OF APPLIED SCIENCES

SCHEME & SYLLABUS OF FIRST YEAR BE

AS PER THE NATIONAL EDUCATION POLICY 2020

(COMMON TO ALL BRANCHES)

ACADEMIC YEAR 2021-22

NEW HORIZON COLLEGE OF ENGINEERING

VISION

To emerge as an institute of eminence in the fields of engineering, technology and management in serving the industry and the nation by empowering students with a high degree of technical, managerial and practical competence.

MISSION

To strengthen the theoretical, practical and ethical dimensions of the learning process by fostering a culture of research and innovation among faculty members and students.

To encourage long-term interaction between the academia and industry through their involvement in the design of the curriculum and its hands-on implementation.

To strengthen and mould students in professional, ethical, social and environmental dimensions by encouraging participation in co-curricular and extracurricular activities.

QUALITY POLICY

To provide educational services of the highest quality both curricular and co-curricular to enable students integrate skills and serve the industry and society equally well at a global level.

VALUES

- Academic Freedom
- Integrity
- Inclusiveness

- Innovation
- Professionalism
- Social Responsibility

DEPARTMENT OF APPLIED SCIENCES

VISION

To build strong and sustainable platform for churning out quality students bearing appreciable conceptual knowledge and engineering mind sets to their respective branch department(s)

MISSION

To develop and nurture dedicated teaching-learning team equipped with strong personality traits towards application driven approach, encompassing all stakeholders

QUALITY POLICY

To provide education services of the highest quality both curricular and co-curricular so that our students can integrate skills and serve industry and society equally well at the Global level.

CONTENTS									
1.	First Semester – Credit Scheme for Chemistry and Physics Cycles	1							
2.	Second Semester - Credit Scheme for Chemistry and Physics Cycles	2							
3.	Key words and Terminologies	3-4							
		•							
4.	Applied Mathematics-I (Common to both Cycles in I semester)	6-7							
5.	Engineering Chemistry	8-10							
6.	Problem solving using Python	11-12							
7.	Computer Aided Engineering Drawing	13-14							
8.	Basic Electronics	15-16							
9.	Engineering Chemistry Lab	17-18							
10.	Problem solving using Python Lab	19-20							
11.	Communicative English (Common to both Cycles in I Semester)	21-22							
12.	Political Science	23-24							
		•							
13.	Applied Mathematics-II (Common to both Cycles in II Semester)	26-27							
14.	Engineering Physics	28-30							
15.	Elements of Mechanical Engineering	31-34							
16.	Elements of Civil Engineering	35-37							
17.	Basic Electrical Engineering	38-39							
18.	Engineering Physics Lab	40-41							
19.	Basic Electrical Engineering Lab	42-43							
20.	Professional writing skills in English (Common to both Cycles in II Semester)	44-45							
21.	Entrepreneurship Development – I	46-47							

CREDIT SCHEME FOR I SEMESTER B.E

	CHEMISTRY CYCLE – I SEMESTER												
Sl. No	Course Code	Course	BoS	D		edit butio	n	Overall Credits		Marks			
110	Code			L	T	P	S	Credits	nours	SEE	CIE	Total	
1	21MAT11A	Applied Mathematics-I	AS	3	1	0	0	4	5	50	50	100	
2	21CHE12A	Engineering Chemistry	AS	3	0	0	0	3	4	50	50 50 100		
3	21CSE13A	Problem solving using Python	CSE	3	0	0	0	3	4	50	50	100	
4	21MEE14A	Computer Aided Engineering Drawing	ME	2	0	1	0	3	4	50	50	100	
5	21ECE15A	Basic Electronics	ECE	3	0	0	0	3	4	50	50	100	
6	21CHL16A	Engineering Chemistry Lab	AS	0	0	1	0	1	3	50	50	100	
7	21CSL17A	Problem solving using Python Lab	CSE	0	0	1	0	1	3	50	50	100	
8	21AEC11A	Communicative English	HSS	1	0	0	0	1	2	50	50	100	
9	21AEC13A	21AEC13A Political Science HSS 1 0 0 0								50	50	100	
		Total						20	30	450	450	900	

	PHYSICS CYCLE – I SEMESTER													
Sl. No	Course Code	Course	BoS	D		edit butio	n		Contact Hours		Mark	XS.		
110				L	T	P	S	Credits	Hours	SEE	CIE	Total		
1	21MAT11A	Applied Mathematics -I	AS	3	1	0	0	4	5	50	50	100		
2	21PHY12A	Engineering Physics	AS	3	0	0	0	3	4	50	50	100		
3	21MEE13A	Elements of Mechanical Engineering		3	0	0	0	3	4	50	50	100		
4	21CIV14A	Elements of Civil Engineering	CV	3	0	0	0	3	4	50	50	100		
5	21EEE15A	Basic Electrical Engineering	EE	3	0	0	0	3	4	50	50	100		
6	21PHL16A	Engineering Physics Lab	AS	0	0	1	0	1	3	50	50	100		
7	21EEL17A	Basic Electrical Engineering Lab	EE	0	0	1	0	1	3	50	50	100		
8	21AEC11A	Communicative English	HSS	1	0	0	0	1	2	50	50	100		
9	21AEC12A	Entrepreneurship Development - I	0	1	1	50	50	100						
		Total						20	30	450	450	900		

CREDIT SCHEME FOR II SEMESTER BE

		CHEMIS	STRY	CYCL	E - II	SEMI	EST	ER					
~					CREI TRIB		N			Marks			
Sl. No	Course Code	Course	BoS	L	Т	P	s	Overall Credits	Contact Hours				
										CIE	SEE	Total	
1	21MAT21A	Applied Mathematics-II	AS	3	1	0	0	4	5	50	50	100	
2	21CHE22A	Engineering Chemistry	AS	3	0	0	0	3	4	50	50	100	
3	21CSE23A	Problem solving using Python	CSE	3	0	0	0	3	4	50	50 50 10		
4	2.LMEE24A	Computer Aided Engineering Drawing	ME	2	0	1	0	3	4	50 50		100	
5	21ECE25A	Basic Electronics	ECE	3	0	0	0	3	4	50	50	100	
6	21CHL26A	Engineering Chemistry Lab	AS	0	0	1	0	1	3	50	50	100	
7	21CSL27A	Problem solving using Python Lab	CSE	0	0	1	0	1	3	50	50	100	
8	L 21AEC21A	Professional Writing Skills in English	HSS	1	0	0	0	1	2	50	50	100	
9	21AEC23A	Political Science	HSS	1	0	0	0	1	1	50	50	100	
		Total						20	30	450	450	900	

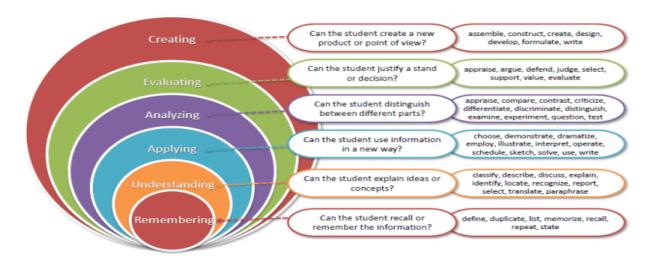
	PHYSICS CYCLE – II SEMESTER													
Sl. No	Course Code	Course	BoS	Di	Cre strib		n	Overall Credits	Contact Hours	Marks				
NO			•	L	T	P	S	Credits	nours	SEE	CIE	Total		
1	21MAT21A	Applied Mathematics -II	AS	3	1	0	0	4	5	50	50	100		
2	21PHY22A	Engineering Physics	AS	3	0	0	0	3	4	50	50	100		
3	121MEE23A	Elements of Mechanical Engineering	ME	3	0	0	0	3	4	50	50	100		
4	21CIV24A	Elements of Civil Engineering	CV	3	0	0	0	3	4	50	50	100		
5	21EEE25A	Basic Electrical Engineering	EE	3	0	0	0	3	4	50	50	100		
6	21PHL26A	Engineering Physics Lab	AS	0	0	1	0	1	3	50	50	100		
7	21EEL27A	Basic Electrical Engineering Lab	EE	0	0	1	0	1	3	50	50	100		
8	121AEC21A	Professional Writing Skills in English		1	0	0	0	1	2	50	50	100		
9	21AEC22A	Entrepreneurship Development - I	MBA	1	0	0	0	1	1	50	50	100		
		Total		u				20	30	450	450	900		

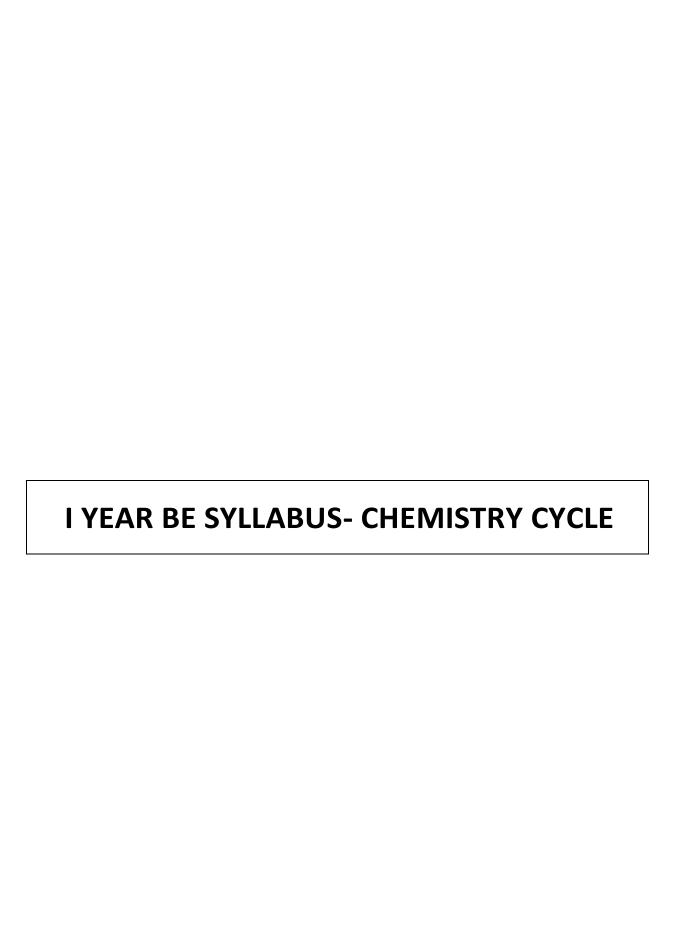
KEY WORDS AND TERMINOLOGIES

OBE	Outcome Based Education (Outcome-Based Education is a student-centric teaching and learning methodology in which the course delivery, assessment are planned to achieve stated objectives and outcomes.
BoS	Board of Studies
L: T:P:S	Lecture: Tutorial: Practical: Self study
CIE	Continuous Internal Evaluation
SEE	Semester End Examination
CREDIT	A unit by which the course work is measured. It determines the number of hours of instructions required per week. One credit is equivalent to one hour of teaching (lecture) or two hours of tutorial or two hours practical or two hours self-study per week. Credits of a course are distributed across L:T:P:S
СО	Course outcome (Is a statement that clearly describes what and how much or how well the student will know and be able to do after successfully completing the specified course – the essential knowledge, abilities, and attitudes that constitute the basic learning needed by a graduate of the course.
POs	Programme Outcomes (POs are statements about the knowledge, skills and attitudes (attributes) the graduate of a formal engineering program should have. POs deal with the general aspect of graduation for a particular program, and the competencies and expertise a graduate will possess after completion of the program). (Refer POs defined by NBA)
SGPA	Semester Grade Point Average (The performance of a student in a semester is indicated by a number called SGPA) $SGPA = \frac{\sum [Course\ Credits\ x\ Grade\ Points]}{\sum [Course\ Credits\]} $ for all the Courses in that Semester
CGPA	Cumulative Grade Point Average (which is the sum total of the SGPA's of all semesters or that of an academic year) $CGPA = \frac{\sum [\text{Course Credits x Grade Points}] \text{for all Courses excluding those with F grades}}{\sum [\text{Course Credits}] \text{for all Courses excluding those with F grades until that semester}}$

Program Outcomes as defined by NBA (PO)

Engineering Graduates will be able to:


- **1. Engineering knowledge**: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- **2. Problem analysis:** Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- **3. Design/development of solutions:** Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- **4. Conduct investigations of complex problems**: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.


- **5. Modern tool usage:** Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- **6. The engineer and society:** Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- **7. Environment and sustainability:** Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- **8. Ethics:** Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- **9. Individual and team work:** Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- **10. Communication:** Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- 11. Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- **12. Life-long learning:** Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Grade Points Scales for Absolute Grading												
Level	Outstanding	Excellent	Very Good	Good	Above Average	Poor	Fail					
Grade	S	A	В	С	D	Е	F					
Grade Points	10	9	8	7	6	4	0					
Score (Marks)	≥90	<90 -	<80 -	<70 -	<60 -	<50 -	<40					
Range %		≥ 80	≥ 70	≥ 60	≥ 50	≥ 40						

RBT	Revised Blooms Taxonomy Levels (There are six levels of cognitive learning								
	according to the revised version of Bloom's Taxonomy. Each level is conceptually								
	different. The six levels are remembering(L1), understanding(L2), applying(L3),								
	analyzing(L4), evaluating(L5), and creating(L6).								

Bloom's Taxonomy (Revised)

APPLIED MATHEMATICS-I

(Common to Physics and Chemistry cycles in the first semester)

Course Code: 21MAT11A Credits: 04
L: T: P: S - 3:1:0:0 CIE Marks: 50
Exam Hours: 03 SEE Marks: 50

Course Outcomes: At the end of the course, the student will be able to:

CO1	Explain the principles of applied mathematics through calculus.
CO2	Apply the concepts of integration of functions on two/three variables over a region.
CO3	Solve the system of linear equations by applying the ideas of linear algebra. Analyze and Simplify
	square matrices to diagonal forms.
CO4	Determine the extreme values of a function of two variables.
CO5	Develop the ability to construct mathematical models involving differential equations and interpret
	their solutions physically.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	-	-	-	-	-	-	3	-	3
CO2	3	3	3	3	-	-	-	-	2	3	-	3
CO3	3	3	3	-	-	-	-	-	-	3	-	3
CO4	3	3	3	3	-	-	-	-	-	3	-	3
CO5	3	3	3	3	-	-	-	-	2	3	-	3

	Course Syllabus		
Module	Contents of the Module	Hours	COs
No.			
1.	Differential Calculus:		
	Polar Curves: Angle between the radius vector and tangent (Derivation and		
	Problems), angle between two curves (Problems), Pedal equation for polar		
	curves (Problems).	10	CO1
	Curvature and radius of curvature: Cartesian and polar forms (without		
	proof). Centre and Circle of curvature (formulae only)		
	Applications: Curvature to evolutes and involutes.		
2.	Partial derivatives: Introduction to partial differentiation, Euler's		
	theorem (Derivation and Problems), Total derivatives, Partial		
	differentiation of composite functions, Jacobian-definition and Problems.	10	CO4
	Applications: Maxima and Minima of functions of two variables-		
_	Problems.		
3.	Integral Calculus: Problems on Double and triple integrals, evaluation of		
	double integrals by changing the order of integration and changing into polar		
	coordinates. Definitions of Beta and Gamma functions, Relation between		
	beta and gamma functions and simple problems.	40	GO.
	Applications: Applications of double and triple integrals to find area enclosed	10	CO2
	by plane curves and volume of sphere and tetrahedron.		
4.	Ordinary Differential Equations of first order: Solution of first-order		
	and first-degree differential equations: Problems on Exact, Linear		
	and Bernoulli's differential equations.		
	Applications: Orthogonal Trajectories, Newton's law of cooling, laws	10	CO5
	of decay and growth-Problems.		
5.	Linear Algebra: Problems on rank of a matrix by elementary transformations,		
	Solution of system of homogeneous and non-homogeneous linear equations,		

Gauss-Jordon method, Linear transformation, Eigen values and Eigen vectors	10	CO3
of a square matrix, Diagonalization of a square matrix-Problems.		
Applications of matrices to Chemical equation and Network flow.		

Text Books:

- 1. Erwin Kreyszig, Advanced Engineering Mathematics, Wiley-India Publishers, 10th Edition, 2014, ISBN: 978-81-265-5423-2.
- 2. B. S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 43rd Edition, 2014, ISBN: 978-81-7409-195-5.

Reference Books:

- 1. Glyn James, Modern Engineering Mathematics, Prentice Hall, 4th Edition, 2015, ISBN: 978-0-273-73409-3
- 2. B. V. Ramana, Higher Engineering Mathematics, McGraw Hill Education (India) Private Limited, 4th Edition, 2016, ISBN: 978-0-07-063419-0.
- 3. H. K. Dass, Advanced Engineering Mathematics, S. Chand & Company Ltd., 28th Edition, 2012, ISBN: 81-219-0345-9.
- 4. N.P.Bali and Manish Goyal, A Text Book of Engineering Mathematics, Laxmi Publications (P) Ltd., 9th Edition, 2014, ISBN: 978-81-318-0832-0.

Assessment Matrix:

CIE- Continuous Internal Evaluation (50 Marks).

Bloom's Category Tests (25 Marks)		8		Quiz-1 (05 Marks)	Quiz-2 (05 Marks)
Remember	5	2.5	2.5	-	-
Understand	5	2.5	2.5	-	-
Apply	10	2.5	2.5	05	05
Analyze	2.5	-	-	-	-
Evaluate	2.5	-	-	-	-
Create	-	-	-	-	-

SEE- Semester End Examination (50Marks).

Bloom's Category	SEE Marks
Remember	10
Understand	10
Apply	20
Analyze	5
Evaluate	5
Create	-

ENGINEERING CHEMISTRY

Course Code: 21CHE12A/22A Credits:3
L:T:P:S - 3:0:0:0 CIE Marks:50
Exam: 03hours SEE Marks:50

Course Outcomes: On completion of the course, student will be able to:

CO1	Explain the chemistry behind engineering materials used in various devices.
CO2	Examine the performance and usage of engineering materials with the knowledge of chemistry.
CO3	Analyze the existing problems and find the solutions with respect to engineering materials, energy production and other natural resources.
CO4	Select the alternative technologies and methods to exploit natural resources in an efficient way.
CO5	Make use of advanced engineering materials in emerging trends.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	1	-	-	1	2	1	1	1	-	2
CO2	2	2	-	-	-	-	1	-	1	1	-	2
CO3	2	2	1	-	-	2	1	1	1	1	-	2
CO4	2	2	1	-	-	1	1	1	1	1	-	2
CO5	2	2	1	-	-	1	1	1	1	1	-	2

	COURSE SYLLABUS		
Module No	CONTENTS OF THE MODULE	Hours	COS
1	Electrochemical Energy Systems: Principles of electrochemistry: Gibb's free energy, EMF, Equilibrium constant, cell notations. Single electrode —Introduction, origin of single electrode potential, Nernst equation for single electrode Potential-Derivation, problems on single electrode potential and cell potential. Reference electrodes- construction and working of calomel electrode. Ion selective electrodes-construction of glass electrode, derivation of Nernst equation for glass electrode potential (EG). Determination of pH of a solution using glass electrode Concentration cells-construction and working, Nernst equation for cell potential, problems on cell potential Batteries: Principal components of a battery, classification of battery-primary, secondary, reserve batteries. Construction, working and applications of Metalair battery (Zn- air), secondary Lithium ion battery (LiCoO ₂). Fuel cell-Definition, classification, construction, working and application of solid oxide fuel cell (SOFC)	9	CO1 CO2 CO3 CO4 CO5
2	Corrosion Science and Metal Finishing; Introduction, Electrochemical theory of corrosion. Types of corrosion –differential metal, differential aeration corrosion (pitting and waterline) and stress corrosion. Corrosion control techniques: – protective coatings – metal coatings (Anodic and Cathodic metal coatings taking Galvanization and Tinning as example). Inorganic coatings - Anodizing of aluminum. Cathodic protection by sacrificial anodic method and Impressed voltage method.		CO1
	Metal Finishing -Introduction and technological importance. Metal finishing techniques. Electro plating - Gold plating by Alkaline cyanide bath. Electroless	-	CO2 CO3 CO4

	ploting. Electrology ploting of conner and its applications in making DCD		CO5		
1	plating – Electroless plating of copper and its applications in making PCB. Instrumental Methods of Chemical Analysis: Methods of chemical analysis-		CO5		
	Qualitative and Quantitative, Advantages and disadvantages of instrumental				
	methods over the classical methods. Principle, instrumentation and applications				
	of UV-Visible spectro photometry and conductometry.				
3	Non-renewable and renewable energy Sources				
J	Introduction to chemical fuels, classification. Properties of fuels: Calorific value				
	(GCV and NCV, octane and cetane numbers, Determination of calorific value of				
	fuel using Bomb calorimeter- Numerical problems, knocking in IC engine and				
	its mechanism, Anti-knocking agents, unleaded petrol, Cracking (Fluidized				
	catalytic cacking)) and reformation of gasoline.		CO1		
	Biomass Energy- Introduction- Routes of biomass conversion to energy	0	CO2		
	(Mention all three routes), Thermo-chemical Conversion : Pyrolysis - Bio-oil:	9	CO3		
	Introduction, process and applications.				
	Chemical Conversion: Transesterification - Biodiesel: Introduction, process		CO5		
	and applications.				
	Solar Energy - Conversion of solar energy into electrical energy, Construction				
İ	and working of silicon solar cell and Dye-sensitized solar cell, Advantages and				
İ	disadvantages of PV cells				
4	Air and water Chemistry				
	Chemical aspects of air pollution: Primary, Secondary, minor air pollutants,				
	aerosols and particulate matter. Selective catalytic reduction of NOx, Chemical				
	capturing of carbon dioxide, Electro static precipitation technique for the				
	removal of particulate matter and smoke in mining industries.				
	Chemical aspects of water pollution: Impurities in water, Hard water and		CO1		
İ	boiler problems due to dissolved oxygen, CO ₂ and MgCl ₂ , determination of		CO2		
	chemical oxygen demand of waste water sample, problems on it. Softening of	9	CO3		
	water by ion exchange method. Desalination of sea water by electro-dialysis.		CO4		
	Reverse osmosis process in water purification. Sewage treatment – Primary,		CO5		
İ	secondary and tertiary treatments. Photo catalytic dye degradation in water by				
İ	TiO ₂ nano particles.				
5	Engineering Materials				
J	Polymers Introduction, types of polymerization- addition and condensation with				
1	examples. Glass transition temperature - Definition, Factors influencing Tg-				
Ī	Flexibility, intermolecular forces, molecular mass. Significance of Tg.				
1	Important commercial and engineering plastics: Synthesis, properties and				
	applications of Polytetra fluoroethylene (PTFE), Kevlar fibre, polyurethane.				
	Biodegradable polymers – Importance, Synthesis, properties and applications		CO1		
1	of polylactic acid.		CO2		
1	Conducting polymers introduction and synthesis of Polyacetylene,	9	CO3		
	Introduction of Polymer composites.		CO4		
1	Nanomaterials: Introduction, Classification based on dimensions (0D, 1D, 2D)		CO5		
1	and 3D. Bottom up and top down approach of nano material synthesis, Synthesis				
1	and applications of copper oxide nanoparticles by co-precipitation method, zinc				
	oxide nano particles by solution combustion method and carbon nano tubes				
	(CNTs) by chemical vapor deposition. Applications of Nano materials in				
	display systems.				

Text Books

- 1. Chemistry for Engineering Students, B. S. Jaiprakash, R. Venugopal, Shivakumaraiah and PushpaIyengar, Latest Edition, Subhash Publications, Bangalore
- 2. Engineering Chemistry by V R Kulkarni and K. Ramakrishna Reddy, 1st Edition, 2016, New Age International Publishers.

3. A Text Book of Engineering Chemistry, Jain and Jain, 16thrd Edition, Dhanpatrai **Publications**

Reference Books

- Corrosion Engineering by M. G. Fontana, Tata McGraw Hill Education Pvt. Ltd. New Delhi.
 Engineering Chemistry, Wiley India second Edition 2014.
- 3. Nanochemistry A Chemical Approach to Nanomaterials by G. A. Ozin and A. C. Arsenault.
- 4. Polymer Science by V.R. Gowariker, 2011 Edition
- 5. A textbook of Environmental Chemistry by V.Subramanian, 2017 edition.

Journal references

- 1. Design of materials for solid oxide fuel cells, permselective membranes, and catalysts for biofuel transformation into syngas and hydrogen based on fundamental studies of their real structure, transport properties, and surface reactivity, Current Opinion in Green and Sustainable Chemistry 2022, 33:100558.
- 2. Graphene and graphene oxide as new class of materials for corrosion control and protection: Present status and future scenario, Progress in Organic Coatings, Volume 147, October 2020, 105741.
- 3. Review on dye-sensitized solar cells (DSSCs): Advanced techniques and research trends, Renewable and Sustainable Energy Reviews, Volume 68, Part 1, February 2017, Pages 234-246
- 4. Photocatalytic degradation of organic pollutants using TiO₂-based photocatalysts: A review, Journal of Cleaner Production 268 (2020) 121725.
- 5. Production, structural design, functional control, and broad applications of carbon nanofiber-based nanomaterials: A comprehensive review, Chemical Engineering Journal, Volume 402, 15 December 2020, 126189.

Assessment Matrix

CIE- Continuous Internal Evaluation (50 Marks)

Bloom's Category	Tests (25Marks)	Assignment (5Marks)	Mini Project (10Marks)	Quiz1 (5 Marks)	Quiz2 (5 Marks)
Remember	5			1	1
Understand	10			2	2
Apply	5	3	3	1	1
Analyze	5	2	3	1	1
Evaluate		-	2		
Create	-	-	2		

SEE- Semester End Examination (50 Marks)

Bloom's Category	SEE Theory(50)
Remember	10
Understand	20
Apply	10
Analyze	10

PROBLEM SOLVING USING PYTHON

Course Code: 21CSE13A/23A Credits: 3
L: T: P: S - 3:0:0:0 CIE Marks: 50
Exam Hours: 03 SEE Marks: 50

Course Outcomes: On completion of the course, student would be able to:

CO1	Understand the fundamental concepts of Python and Apply the basic programmingskills of Python						
CO1	Language in problem solving.						
CO2	Implement Python program using different data types, Control Statement and loops.						
CO3	Analyze different strings manipulation functions and user defined functions available in Python.						
CO4	Apply List and Tuple concepts to design a Python program.						
CO5	Apply set and dictionary concepts of Python Language in problem solving.						
CO6	Understand the application of Python programming language in real world problems.						

СО	PO1	PO 2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1 2	PS O 1	PSO 2
CO1	3	-	-	-	ı	-	-	-	-	-	-	2	-	-
CO2	3	-	-	-	3	-	-	-	3	-	-	-	3	3
CO3	3	3	3	-	3	-	-	-	3	-	-	-	3	3
CO4	3	3	3	-	3	-	-	-	3	-	-	-	3	3
CO5	3	3	3	1	3	-	-	-	3	-	-	-	3	3
CO6	3	3	-	-	-	-	-	-	-	-	-	2	3	3

	COURSE SYLLABUS		
Module	CONTENTS OF MODULE	Hrs	COs
No			
1	Basics of Python: Algorithm and Flowchart, Elements of Python: Keywords, Identifiers, Variables, Data Types, Features, Operators and Expression: AssignmentStatements, Numeric Expressions, Order of Evaluation, Operator Precedence, Type, Type Conversations, Input Output Statement, Comments in Python, Sample Program.		CO1
2	Loops and Control Statements: If, elif, Nested if, for, nested for, while, continue, Break, Pass, Sample Programs.	7	CO2
3	Strings and Functions: Functions: Advantage of Functions in Python, creating a Function, Function Calling, The return statement, Arguments in function, Built-in Function, Lambda Functions. Strings: Creating String in Python, Strings indexing and splitting, Reassigning Strings, Deleting the String, String Operators, Python String functions, Sample Program.		CO3

	Data Structures in Python (List and Tuple):				
	List: Creating a List, Characteristics of Lists, List indexing and splitting, Python				
4	List Operations, iterating a List, adding elements to the list, Removing elements				
4	from the list, Python List Built-in functions. Sample Programs.				
	Tuple: Creating a tuple, Tuple indexing and slicing, Negative Indexing,				
	Deleting Tuple, Basic Tuple operations, Python Tuple inbuilt functions,	10	CO4		
	Sample Programs, List vs. Tuple.				
	Data Structures in Python (Set & Dictionary):				
	Set: Creating a set, adding items to the set, removing items from the set, remove (),				
5	Python Set Operations: Union, Intersection, Difference, Symmetric Difference, Set				
	comparisons, Python Built-in set methods, Sample Programs.				
	Dictionary: Creating the dictionary, Properties of Keys and Values, Accessing the		CO5&		
	dictionary values, adding dictionary values, deleting elements using del keyword,	9	CO6		
	Iterating Dictionary, Built-in Dictionary				
	functions, Sample Programs. Applications of Python.				

Text Books:

- 1. Allen B. Downey, "Think Python: How to Think Like a Computer Scientist", 2nd edition, Updated for Python 3, Shroff/O' Reilly Publishers, 2016 (http://greenteapress.com/wp/thinkpython/)
- 2. Guido van Rossum and Fred L. Drake Jr-An Introduction to Python Revised and updated for Python 3.2, Network Theory Ltd., 2011.

Reference Books:

- 1. John V Guttag-Introduction to Computation and Programming Using Python Revised and expanded Edition, MIT Press, 2013
- 2. Robert Sedgewick, Kevin Wayne, Robert Dondero-Introduction to Programming in Python: An Inter-Disciplinary Approach, Pearson India Education Services Pvt. Ltd., 2016.

ASSESSMENT MATRIX

CIE- Continuous Internal Evaluation (50Marks)

Bloom's Category	Tests (25 Marks)	Assignment (5 marks)	Quiz 1 (05 Marks)	Quiz 2 (05 Marks)	Mini Project (10 Marks)
Remember	5	-	-	-	-
Understand	5	2.5		-	-
Apply	10	2.5	05	05	10
Analyze	2.5	-	-	-	-
Evaluate	2.5	-	-	-	-
Create	-	-	-	-	-

SEE- Semester End Examination(50Marks)

Bloom's Category	SEE Marks
Remember	10
Understand	10
Apply	25
Analyze	2.5
Evaluate	2.5
Create	-

COMPUTER AIDED ENGINEERING DRAWING

 Course Code
 : 21MEE14A/24A
 Credits
 : 03

 L: T: P: S
 : 1:0:2:0
 CIE marks
 : 50

 Exam Hours
 : 03
 SEE marks
 : 50

COURSE OUTCOMES: At the end of the Course, the Student will be able to:

CO1	Prepare and understand engineering drawings.
CO2	Analyze orthographic projections of points, lines, planes and solids in different positions using modern CAD/CAE tool.
CO3	Visualize two dimensional drawings and three dimensional objects.
CO4	Apply the concepts of Engineering graphics to prepare real time engineering drawings.

Mapping of CO v/s PO:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	-	-	-	-	-	-	-	-	-	-	-
CO2	3	3	-	-	3	-	-	-	-	1	-	3
CO3	3	3	-	-	3	1	-	-	1	1	-	3
CO4	3	3	-	-	3	1	-	-	1	1	-	3

	Course syllabus							
Module No	Contents of Module	Hrs	COs					
1	INTRODUCTION: Introduction to Computer Aided Sketching: Introduction, Drawing instruments and their uses, BIS Conventions, Lettering, Dimensioning, geometrical constructions and freehand practicing. Introduction to software, commands used for engineering drawing PROJECTIONS OF POINTS Introduction, Definitions - Planes of projection, reference line and conventions employed, Projections of points in all the four quadrants. PROJECTIONS OF STRAIGHT LINES True and apparent lengths, True and apparent inclinations to reference planes. PROJECTIONS OF PLANE SURFACES Introduction, projections of plane surfaces—triangle, square, rectangle, pentagon, hexagon and circle (change of position method only)	12	CO1, CO2					
2	PROJECTIONS OF SOLIDS Introduction, Projections of right regular tetrahedron, hexahedron, prisms, pyramids, cylinders and cones in different positions.	12	CO1, CO2					
3	ORTHOGRAPHIC PROJECTIONS Conversion of pictorial views of a simple machine parts into orthographic projections.	08	CO1, CO3					

4	ISOMETRIC PROJECTIONS Introduction, Isometric scale, Isometric projection of simple plane figures, Isometric projection of tetrahedron, hexahedron, rightregular prisms, pyramids, cylinders, cones, spheres, cut spheres and combination of solids.	08	CO1, CO3
5	ENGINEERING APPLICATIONS Sketching and Drawing Simple Mechanisms, Wiring and lighting diagrams using CAD software, basic Building Drawing, Electronic Drawing- PCB Drawings.	04	CO1, CO4

Text Books:

- 1. Engineering Drawings Vols-1 & 2, K. R. Gopalakrishna, Subhas Stores, Bangalore,2005. ISBN-13-9789383214235
- 2. Engineering Drawing, N.D. Bhat & V.M. Panchal, 45 Edition, Charotar Publishing, Gujarat, 2005. ISBN-13-9788185594170
- 3. "Computer Aided Engineering Drawing" by Dr. M H Annaiah, Dr C N Chandrappa and Dr B Sudheer Premkumar Fifth edition, New Age International Publishers. ISBN-13-9789387788893

Reference Books:

- 1. French, Thomas E., Vierck, C. J. and Foster, R. J., Fundamental of Engineering Drawing & Graphics Technology, McGraw Hill Book Company (2005). ISBN-13-9780071004251
- 2. A Textbook of Engineering Graphics by K. Venugopal & Prabhu Raj, New Age International, 2009. ISBN-13-9788122424577
- **3.** Fundamentals of Engineering Drawing with an Introduction to Interactive Computer Graphics for Design and Production- Luzadder Warren J., Duff John M., Eastern Economy Edition, 2005- Prentice-Hall of India Pvt. Ltd., New Delhi. ISBN-13-9780134808499

Publications of Bureau of Indian Standards

- 1. IS 10714 (Part 20) 2001 & SP 46 2003: Lines for technical drawings.
- 2. IS 11669 1986 & SP 46 2003: Dimensioning of Technical Drawings.
- 3. IS 15021 (Parts 1 to 4) 2001: Technical drawings Projection Methods.

NPTEL/SWAYAM/ MOOC: https://nptel.ac.in/courses/112/103/112103019/

ASSESSMENT MATRIX

CIE -Continuous Internal Evaluation for theory (50 marks)

Bloom's Category	Tests	Assignment 1	Assignment 2	Surprise Test
Marks (out of 50)	25	10	10	5
Remember				
Understand	5	5		2
Apply	10	5	5	3
Analyze	10		5	
Evaluate				
Create				

Semester End Examination (50 marks)

Bloom's Category	SEE marks
Remember	
Understand	10
Apply	20
Analyze	20
Evaluate	
Create	

BASIC ELECTRONICS

 Course Code
 : 21ECE15A/25A
 Credits
 : 03

 L: T: P:S
 : 3:0:0:0
 CIE Marks
 : 50

 Exam Hours
 : 03
 SEE Marks
 : 50

Course Outcomes: At the end of the Course, the Student will be able to:

CO1	Understand the operating principle of semiconductor devices and its applications					
CO2	Identify the appropriate semiconductor device for real time applications					
CO3	Design the basic digital circuits using Boolean Algebra					
CO4	Utilize the knowledge of modulation techniques in relating the generations of cellular					
CO4	communication systems					
CO5	Apply the knowledge of addressing modes of 8085 Microprocessor to write the basic Assembly					
COS	Language Programs					
CO6	Engage in independent learning as a member of a team, submit a report and use ICT for effective					
COO	presentation of the study on assigned topics related to electronic systems					

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	-	-	-	-	-	-	-	-	-	-	-	-
CO2	3	-	-	-	-	-	-	-	-	-	-	-
CO3	3	3	-	-	-	-	-	-	-	-	-	-
CO4	3	3	-	-	-	-	-	-	-	-	-	-
CO5	3	3	-	-	-	-	-	-	-	-	-	-
CO6	2	2	2	2	2	-	-	-	2	2	-	2

	SYLLABUS		
Sl	Contents of Module	Hrs	COs
no			
1	Semiconductor Diodes and Applications: P-N Junction diode – its	9	CO1,CO2,CO6
	principle, characteristics and parameters		
	Applications: Half-Wave Rectifier, Full Wave Rectifier (Two Diode, Bridge		
	Rectifier), Zener diode as Voltage regulator, Regulated power supply		
	MOSFET: Introduction to MOSFET theory, Operation and characteristics of		
	EMOSFET, Application as Inverter.		
2	Bipolar Junction Transistor: BJT Operation, BJT Voltages and Currents,	9	CO1,CO2,CO6
	Common Emitter Characteristics, Numerical examples as applicable.		
	BJT as an Amplifier: Biasing - DC load line, Need for biasing, Voltage		
	divider bias- Approximate analysis, Numerical examples as applicable,		
	Single stage CE amplifier, phase reversal, effect of coupling and bypass		
	capacitors. Comparison between BJT and MOSFET.		
3	Digital Electronics: Introduction, Number Systems (Decimal, Binary,	9	CO3,CO6
	Hexadecimal, Octal), Conversion from one number system to other,		·
	Complement of Binary Numbers, Boolean Algebra Theorems, De Morgan's		
	theorem, Logic gates, Algebraic Simplification, Minterms and Maxterms.		
4	Communication System: Introduction to Electronic communication system,	9	CO4,CO6
	Principles of amplitude modulation, Introduction to angle modulation, FM		·

	and PM waveforms, simplified block diagram of a digital radio system, Amplitude shift keying, Frequency shift keying, Phase shift keying Cellular telephone concepts — Evolution of cellular telephone, cellular telephone, 1G, 2G cellular telephone systems — GSM, 3G and 4G.		
5	Building blocks of a Digital system: Half Adder, Full Adder, Encoder,	9	CO3, CO5,CO6
	Decoder, Latch, Flip-Flop, Registers.		
	Introduction to Microprocessors, General operation of Microprocessors, 8085		
	Microprocessor architecture and working principle, Pin diagram and		
	description, Addressing modes and basic instructions.		

Text Books:

- Electronic Devices and Circuits, David. A. Bell, 5th Edition, 2008, Oxford University Press.
 Digital Logic and Computer Design, M. Morris Mano, 5th edition, 2002, PHI.
- 3. Principles of Electronics, V K Mehta, 12th edition, 2020, S. Chand Publishing.

Reference Books:

- 1. Electronic communication systems, Wayne Tomasi, 5th edition, 2001, Pearson education.
- 2. Microprocessor Architecture, Programming and Applications with 8085, Ramesh Gaonkar, 6th Edition, 2013, Prentice Hall.

Assessment Matrix

CIE- Continuous Internal Evaluation (50 Marks)

Bloom's Category	Tests	Assignment	Quiz	Quiz	Mini Project
Marks (out of 50)	25	5	5	5	10
Remember	10	-	-	-	-
Understand	10	-	2	2	-
Apply	5	5	3	3	-
Analyze	-	-	-	-	10
Evaluate	-	-	-	-	-
Create	_	-	-	-	-

SEE- Semester End Examination (50 Marks)

Bloom's Category	Tests
Remember	10
Understand	20
Apply	15
Analyze	5
Evaluate	-
Create	-

ENGINEERING CHEMISTRY LAB

Course Code: 21CHL16A/26A Credits: 01
L: T: P: S - 0:0:1:0 CIE Marks: 50
Exam Hours: 03 SEE Marks: 50

Course outcomes: On completion of the course, student would be able to:

CO1	Explain the basic principles of quantitative analysis.
CO2	Demonstrate the various techniques of quantitative analysis used in engineering materials.
CO3	Apply the laboratory practices such as safety, waste management and record keeping for the future tasks.
CO4	Analyze the various parameters with respect to chemistry to decide the quality of materials.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	1	1	2	1	1	1	1	1	-	2
CO2	2	2	-	-	2	1	1	1	1	1	-	2
CO3	2	-	-	-		1	1	1	1	1	-	2
CO4	2	2	1	1	2	1	1	1	1	1	-	2

Sl. No.	List of Experiments	COs
	PART A	1
1.	Estimation of iron in steel by potentiometry.	
2.	Estimation of copper by colorimetry	
3.	Estimation of mixture of acids using standard NaOH by conductometry.	1
4.	Determination of pKa value of a weak acid using pH meter	1
5.	Determination of viscosity coefficient of a given liquid using Ostwald 's viscometer .	1
6.	Estimation of potassium by Flame photometry (Demo).	ξ
	PART B	13.8.6
7.	Determination of total hardness of a sample of water by using standard EDTA solution	707 600 100
8.	Estimation of percentage of calcium oxide in cement solution.	
9.	Estimation of manganese dioxide in pyrolusite ore.	5
10.	Determination of chemical oxygen demand (COD) of the given industrial waste water sample	
11.	Determination of percentage of iron in haematite ore by External indicator method (Demo)	
12.	Innovative experiment designed by student.	1

References

Text Books:

- 1. Vogel's A.I. A text book of quantitative analysis, 35th edition, 2012.
- 2. Willard, Merit, Dean and Settle, A text book of Instrumental analysis, 6th edition 2012.

Reference books:

- 1. G.H Jeffery, J Bassett, J Mendham and R.C. Denney Vogel's A.I. A text book of quantitative analysis, Dorling Kindersley (India) Pvt., Ltd. 35th edition, 2012.
 - 2. Gary D Christian, Analytical Chemistry, Wiley India, 6th edition, 2015.

Assessment Matrix

CIE- Continuous Internal Evaluation (50 Marks)

Bloom's Category	Performance in each lab session (10 experiments each for 25 marks)	Internal Test/Model Exam (50 marks scaled to 20)	Lab record (5 marks)
Marks(Out of 25)	25	20	5
Remember	5	4	
Understand	10	8	
Apply	5	4	5
Analyze	5	4	
Evaluate			
Create			

SEE- Semester End Examination (25 Marks)

Bloom's Category	SEE
Marks	50
Remember	10
Understand	20
Apply	10
Analyze	10
Evaluate	
Create	

PROBLEM SOLVING USING PYTHON LAB

Course Code: 21CSL17A/27A Credits: 01
L: T: P: S - 0:0:1:0 CIE Marks: 50
Exam Hours: 03 SEE Marks: 50

Course Outcomes: At the end of the Course, the Student will be able to:

CO1	Develop algorithms and flowcharts to solve computational problems.
CO2	Apply the basic concepts of branching, looping statements of Python Language in problem solving.
CO3	Create programs by applying the concepts of functions, strings.
CO4	Implement programs using List and Tuple concepts.
CO5	Implement programs using Set and Dictionary
CO6	Implement Searching and Sorting Problem using Python.

CO	PO	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1	PSO	PS
	1									0	1	2	1	O2
CO1	3	3	3	3	2	2	-	2	2	-	-	3	-	-
CO2	3	3	3	3	2	2	-	2	2	-	-	3	3	3
CO3	3	3	3	3	2	2	-	2	2	-	-	3	3	3
CO4	3	3	3	3	2	2	-	2	2	-	-	3	3	3
CO5	3	3	3	3	2	2	-	2	2	-	-	3	3	3
CO6	3	3	3	3	2	2	-	2	2	-	-	3	3	3

Exp. No	Experiment	Hours	COs
1	Write a Python Program to do quadratic equations.	3	CO1,CO2
2	Write a Python Program to Multiply two matrixes.	3	CO1,CO2
3	Write a program to find factorial of a number (Recursive and iterative)	3	CO1,CO2
4	Write a Python Program to Check if a string is palindrome or not.	3	CO1,CO3
5	Write a Python Program to calculate value of nCr.	3	CO1,CO3
6	Write a Python Program to Print Pascal Triangles	3	CO1,CO2,CO4
7	Write a Python Program to check whether a given matrix is sparse matrix or not.	3	CO1,CO2,CO4
8	Write a Python Program for Selection Sort	3	CO1,CO4,CO6
9	Write a Python Program for Bubble Sort	3	CO1,CO4,CO6
10	Write a Python Program for Merge Sort	3	CO1,CO4,CO6
11	Write a Python program to count the number of characters	3	CO1,CO3

	(character frequency) in a string.		
12	Write a Python Program to compute $Sin(x)$ using Taylor series approximation given by $Sin(x) = x - (x3/3!) + (x5/5!) - (x7/7!) + \dots$	3	CO1,CO4
	Illustrate with a python program to show various insert and delete		
13	operations in set, tuple, dictionary and list.	3	CO1,CO4,CO5
14	Write a Python Program for Linear Search.	3	CO1,CO6
15	Write a Python Program for Binary Search (Recursive and iterative).	3	CO1,CO6

CIE- Continuous Internal Evaluation (50Marks)

Bloom's Category	Performance in each lab session (15 experiments each for 25 marks)	Internal Test/Model Exam (50 marks scaled to 20)	Lab record (5 marks)
Marks(Out of 25)	25	20	5
Remember	2.5		1.5
Understand	2.5		1.5
Apply	10	10	2
Analyze	10	10	
Evaluate			
Create			

SEE- Semester End Examination (50Marks)

Bloom's Category	SEE (50 Marks)
Remember	5
Understand	5
Apply	20
Analyze	20
Evaluate	-
Create	-

COMMUNICATIVE ENGLISH

(Common to Physics and Chemistry cycles in the First semester)

Course Code: 21AEC11A Credits: 01

L: T: P: S - 1:0:0:0 CIE Marks : 50 Exam Hours: 2 SEE Marks : 50

Course Outcomes: At the end of the course, the student will be able to:

CO1	Recognize the grammatical structures in English and identify errors in sentences
CO2	Demonstrate conversational skills using situational vocabulary
CO3	Examine the importance of sub skills of listening for effective communication
CO4	Analyse the importance of receptive and productive skills of communication

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	-	-	-	-	-	-	-	-	-	3	-	3
CO2	-	-	-	-	-	-	-	-	3	3	-	3
CO3	-	-	-	-	-	-	-	-	-	3	-	3
CO4	-	-	-	-	-	-	-	-	-	3	-	3

Module No.	Module Contents	Hours	COs
1	Self-introduction – Talking about self, ambition, hobbies, likes, dislikes, talents and achievements. Asking for and Giving Information (Pair work) (SEE Task 1) Asking Questions. (WH, Aux Verbs), Helping Verbs usage chart, Question Tags. Nouns, Pronouns	5	CO1
2	Talking about Routine, Repeated activities (Frequency adverbs) Verb: Main / Assistant, Forms of Verbs, Use of Do, Does in negative and question forms Verbal Ability Error Detection: Subject Verb Agreement	5	CO1 CO2
3	Describing people, things, actions, process (SEE Task 2) Describing ongoing actions Situational conversations, Role Plays Adjectives, Adverbs Verbal Ability: Sentence Correction, Sentence Completion.	5	CO1 CO2 CO4

	Listening Skills:		
	Importance of listening for effective communication		
	Traits of a good listener		
	Listening sub skills		
4	Listening to audio files of short stories, news, TV clips,		CO2
	Documentaries		CO3
	Gap filling exercise and Paraphrasing		CO4
	Verbal Ability:	4	
	Common Errors in English 1 (Articles, Prepositions)		
	Cloze Exercises		
	Presentation Skills:		
	Nonverbal Communication (Body Language): Kinesics, Oculesics,		
	Paralanguage.	~	GO1
_	Overcoming stage fear,	5	CO1
5	Organising a speech - Preparation, Practise, Delivery		
	Articulation of Ideas:		
	How to generate ideas and express them? Fluency development activities like		
	comparing, expressing opinions, agreeing & disagreeing (SEE Task 3)		
	Group Discussion		

- 1. Grammar Practice Activities- Penny Ur, Cambridge University Press
- 2. Intermediate English Grammar Raymond Murphy Cambridge University Press

Reference Books:

- 1. Grammar & Composition. S. Chand. ISBN 81-219-2197-X.
- 2. Final Course of Grammar & Composition Wren. P.C& Martin, H

Assessment Matrix:

Continuous Internal Evaluation (50 Marks)

Bloom's Category	Tests (25 Marks)	Student Presentation (25 Marks)
Remember	5	-
Understand	5	-
Apply	10	15
Analyse	5	10
Evaluate	-	-
Create	-	-

SEE – Semester End Examination (50 Marks)

Bloom's Category	50 Marks
Remember	10
Understand	10
Apply	20
Analyze	10
Evaluate	
Create	

POLITICAL SCIENCE

Course Code:21AEC13A/23ACredits: 01L: P: T: S -1:0:0:0CIE Marks: 50Exam Hours:2 HrsSEE Marks: 50

COURSE OUTCOMES: On completion of the course, student will be able to:

CO1	Explain the fundamentals of Political Science and other social sciences.
CO2	Describe the concept of state and basic principles of International Law.
CO3	Apply gender centric concept in various spheres of human endeavour.

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	-	-	-	-	-	1	-	3	2	-	-	1
CO2	-	-	-	-	-	1	-	3	2	-	-	1
CO3	-	-	-	-	-	1	-	3	2	-	-	1

	SYLLABUS		
Module No.	CONTENTS OF THE MODULE	Hours	COs
1	Political Science:		
	a. Meaning, Nature, scope & Importance of political science. Utility and		
	Relevance of Political Science.		
	b. Relation with other Social Science.		CO1,
	i. Political Science and Economics.	3	CO2
	ii. Political Science and Ethics.		&
	iii. Political Science and Law.		CO3
	iv. Political Science and public Administration.		
	v. Political Science and History		
	c. Study of Politics		
2	State:		
	a. Nature and Elements of state.		
	b. State and Civil Society.		CO1
	c. Theories of State	3	CO1, CO2
	d. State and Individual		&
	Liberty, Equality		CO3
	e. State and Nation		
3	Law		
	Justice		
	Government	2	CO1
	Elements of Indian Democracy:	3	CO1, CO2
	Understanding Democracy.		& &
	Procedural Democracy		CO3
	International Law		

4	Gender and Politics: a. Understanding Gender b. Gender Rights, Gender and Social and Equal wages. c. Gender difference in political leadership.	3	CO1, CO2 & CO3
	Public Opinion, Political Parties and Pressure group		
	a. Meaning and Importance of Political Parties.		
	b. Origin of Political Parties		
5	c. Essential Conditions for the Formation of Political Parties		
	d. Kinds of Political Parties	3	CO1,
	e. Function of Political Parties		CO2
	f. Pressure-Group and Lobbies		& CO3
	Federalism and Decentralization		
	Federalism: Division of Power		
	Decentralization: Panchayat Raj and Municipalities		

Assessment Matrix:

Continuous Internal Evaluation (50 Marks)

Bloom's Category	Tests (25 Marks)	Assignment (25 Marks)
Remember	5	-
Understand	10	-
Apply	10	15
Analyse	-	10
evaluate	-	-
create	-	-

SEE – Semester End Examination (50 Marks)

Bloom's Category	50 Marks
Remember	10
Understand	20
Apply	20
Analyze	
Evaluate	
Create	

Text Books:

- 1. A. C. Kapur-Principles of Political Science.
- 2. V. R. Mehta, Indian Political Thought, Manohar, New Delhi, 1996.
- 3. John Hoffman and Paul Graham (2007) Introduction to political Theory (New Delhi: Pearson Education)
- 4. Agarwal, Bhushan and Bhagwan, Principles of Political Science, 1971, Ramchand & Co., Delhi.
- 5.B. K. Gokhale: Political Science, Himalaya Publication House, New Delhi, Bangalore 2001.

Reference Books:

- 1. Misra Krishnakanth, Contemporary Political Theory, Pragati Publication, New Delhi, 1983
- 2.B. K. Gokhale: Political Science, Himalaya Publication House, New Delhi, Bangalore 2001.
- 3.Srinivasan.J.(2008). Democracy. In Bhargava, R., & Archarya A.(Eds.) Political Theory: An Introduction. New Delhi: Pearson Longman, pp.106-128.
- 4.M. J. Vinod and Meena Deshpande (2013) Contemporary Political Theory (PHI Learning: New Delhi

I YEAR BE SYLLABUS- PHYSICS CYCLE

APPLIED MATHEMATICS-II

(Common to Physics and Chemistry cycles in the second semester)

 Course Code
 : 21MAT21A
 Credits
 : 04

 L: T: P: S
 : 3:1:0:0
 CIE Marks
 : 50

 Exam Hours
 :3
 SEE Marks
 : 50

Course Outcomes: At the end of the course, the student will be able to:

CO1	Interpret the linear differential equations and their applications.
CO2	Solve initial and boundary value problems by using Laplace transform and also find the response
	of the system.
CO3	Analyze the convergence and divergence of an infinite series.
CO4	Justify the concept of vectors as a tool for solving engineering problems.
CO5	Formulate real world problems using partial differential equations.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	3	-	-	-	-	-	-	-
CO2	3	3	3	3	3	-	-	-	1	-	-	3
CO3	3	3	3	3	3	-	-	-	-	3	-	-
CO4	3	3	3	3	3	-	-	-	-	-	-	3
CO5	3	3	3	3	3	-	-	-	-	3	-	3

	Course Syllabus							
Module No.	Contents of the Module	Hours	cos					
1.	Linear differential equations of second and higher order: Solution of initial and boundary value problems, Inverse differential operator techniques for the functions- e^{ax} , e^{ax} $f(x)$, x $f(x)$, Sin $(ax + b)$, Cos $(ax + b)$ and a x^n . Solution of Cauchy's and Legendre's homogeneous linear equations and variation of parameters method. Applications: Electrical Circuits-Simple problems.	10	CO1					
2.	Partial Differential equations: Formation of partial differential equation by eliminating arbitrary constants and functions. Solution of Lagrange's partial differential equation, Solution by separation of variables method. Applications: Solutions of one-dimensional heat, wave and two-dimensional Laplace equation by separation of variables method.	10	CO5					
3.	Vector Calculus: Gradient, Divergence, Curl-physical significance and problems. Solenoidal and Irrotational vector fields. Vector identities: div(grad Ø), div(Curl A), Curl(grad Ø), div(φA) and curl (φA). Applications: Potential functions, line integral, Problems on Gauss and Greens theorems (without proof and verification) and work done-Problems.	10	CO4					

4.	Infinite Series: Sequences, Series of positive terms, convergence and divergence, comparison tests, D'Alembert's ratio test, Cauchy's root test. Alternating series: Absolute and Conditional convergence-problems.	CO3
5.	Laplace Transform and Inverse Laplace Transforms: Definition and Laplace transforms of standard functions. Properties of Laplace transforms: Shifting properties, $t^n f(t)$, $\frac{f(t)}{t}$ forms. Periodic functions (without proof), unit-step function-Problems. Inverse Laplace Transform by partial fractions, completing the square method, Problems on Convolution theorem (without proof and verification). Applications of Laplace Transform: Solution of linear differential equations.	CO2

Text Books:

- 1. Erwin Kreyszig, Advanced Engineering Mathematics, Wiley-India Publishers, 10th Edition, 2014, ISBN: 978-81-265-5423-2.
- 2. B. S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 43rd Edition, 2014, ISBN: 978-81-7409-195-5.

Reference Books:

- 1. Glyn James, Modern Engineering Mathematics, Prentice Hall, 4th Edition, 2015, ISBN: 978-0-273-73409-3
- 2. B. V. Ramana, Higher Engineering Mathematics, McGraw Hill Education (India) Private Limited, 4th Edition, 2016, ISBN: 978-0-07-063419-0.
- 3. H. K. Dass, Advanced Engineering Mathematics, S. Chand & Company Ltd., 28th Edition, 2012, ISBN: 81-219-0345-9.
- 4. N.P.Bali and Manish Goyal, A Text Book of Engineering Mathematics, Laxmi Publications (P)
- 5. Ltd., 9th Edition, 2014, ISBN: 978-81-318-0832-0.

Assessment Matrix:

CIE- Continuous Internal Evaluation (50 Marks)

Bloom's Category	Tests (25 Marks)	Assignment-1 (7.5 Marks)	Assignment-2 (7.5 Marks)	Quiz-1 (05 Marks)	Quiz-2 (05 Marks)
Remember	5	2.5	2.5	-	-
Understand	5	2.5	2.5	-	-
Apply	10	2.5	2.5	05	05
Analyze	2.5	-	-	-	-
Evaluate	2.5	-	-	-	-
Create	-	-	-	-	-

SEE- Semester End Examination (50Marks)

Bloom's Category	50 Marks
Remember	10
Understand	10
Apply	20
Analyze	05
Evaluate	05
Create	-

ENGINEERING PHYSICS

 Course Code
 : 21PHY12A/22A
 Credits
 : 03

 L:T:P:S
 : 3:0:0:0
 CIE Marks
 : 50

 Exam Hours
 : 03
 SEE Marks
 : 50

Course Outcomes: On completion of the course, student would be able to:

CO1	Define and explain various scientific phenomena related to physics
CO2	Illustrate the physics behind the materials for diverse Engineering applications.
CO3	Apply the concepts of physics to explore solutions in Engineering and technology
CO4	Analyze and solve problems related to Engineering Physics

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	-	-	-	-	-	-	-	-
CO2	3	2	-	-	-	-	-	-	-	-	-	1
CO3	3	2	-	-	-	-	-	-	-	-	-	1
CO4	3	2	-	-	-	-	-	-	-	-	-	1

	COURSE SYLLABUS					
Module No.	CONTENTS OF THE MODULE	Hours	Cos			
1	Quantum Mechanics: Heisenberg's uncertainty principle - statement, significance, application (nonexistence of electron in nucleus), wave function, Physical significance of wave function, setting up of Schrodinger Time Independent wave equation in 1 dimension, Eigen values and Eigen functions, Application - Particle in a box (one dimensional), Basics of Quantum Computing: Bits-Qubits - superposition and Quantum entanglement- Problems.	8	CO1, CO2, CO3, CO4			
2	Dielectric & Magnetic Properties Dielectrics, types, polarization, types and temperature dependence of polarization, Polarizability, Internal field (Expression for One dimensional solid), Clausius-Mossotti equation (Derivation), Dielectric loss, Dielectric relaxation, frequency dependence of ε _r , Ferroelectrics – properties & applications - ferroelectric RAM. Ferromagnetic Domain theory, B-H curve, Soft and hard magnetic materials, Problems on dielectrics	8	CO1, CO2, CO3, CO4			
3	Lasers& Fiber Optics Introduction, Interaction of radiation with matter, Einstein's A and B coefficients, expression for energy density at thermal equilibrium, conditions and requisites of Laser, characteristics of laser, Types – Quantum Dot Laser and their applications Application of Laser in synthesis of materials – Laser Ablation Technique, Problems. Principle and propagation of light in optical fibers, Numerical aperture and Acceptance Angle, Types of optical fibers (material, refractive index, mode), attenuation, Application of optical fibers: Fiber Optical Communication system (Block diagram), Problems.	8	CO1, CO2, CO3, CO4			

Qi wi ba In se se co Fe	conductors & Semiconductors Quantum free electron theory, Fermi factor, variation of Fermi factor with Energy at T = 0K, T> 0K, Density of states (qualitative), Problems ased on Fermi factor. Introduction to semiconductor physics, conductivity in an intrinsic emiconductor, derivation for electron concentration in intrinsic emiconductor(Ne) and mention of Nh, expression for intrinsic carrier concentration ni from Law of mass action, expression for position of ermi level in Intrinsic semiconductors, Hall Effect and expression for fall coefficient in n and p type semiconductors(derivation) - poplications of Hall effect, Problems	8	CO1, CO2, CO3, CO4
In to Dif ins app	strumentation Physics troduction to materials – Nanomaterials and composites. Introduction characterization techniques, XRD- Bragg's Law, X-ray ffractometer, Particle size determination. AFM – Principle, strumentation and application, XPS – Principle, instrumentation and plication, SEM – Principle, instrumentation, Application and vantages. Problems on XRD	8	CO1, CO2, CO3, CO4

Text Books

- 1. Modern Physics by R Murugeshan, Kiruthiga Sivaprasath, S Chand Publishing, 18th ed. 2016
- 2. Concepts of Modern Physics, Arthur Beiser, 7th Edition, 2017, Tata McGrawHill
- 3. Fundamentals of Quantum Computing by Venkateswaran Kasirajan, Springer, 2021, ISBN 978-3-030-63688-3 ISBN 978-3-030-63689-0 (eBook) https://doi.org/10.1007/978-3-030-63689-0
- 4. Materials Characterization Introduction to Microscopic and Spectroscopic Methods, Prof. Yang Leng, 2nd edition, 2013, Wiley-VCH Verlag GmbH & Co. KGaA, Boschstr. 12,

Reference Books

- 1. A Textbook of Solid State Physics, S.O. Pillai, 6th Edition, 2010, New Age International
- 2. Engineering Physics, D K Bhattacharya, poonam Tandon, Oxford university Press, 2015
- 3. Solid State Physics, C Kittel, 8th Edition, 2019, WileyIndian Edition
- 4. Engineering Physics, B. K. Pandey and S. Chaturvedi, 1st edition, 2012, Cengage Publication
- 5. Handbook of Materials Characterization, Surender Kumar Sharma, ISBN 978-3-319-92954-5 ISBN 978-3-319-92955-2 (eBook), 2019, Springer

Assessment Matrix

CIE- Continuous Internal Evaluation (50 Marks)

Bloom's Category	Tests	Assignment	Alternative Assessment*	Quiz
Marks (out of 50)	25	5	10	10
Remember				
Understand	10		03	
Apply	15	5	03	10
Analyze			04	

^{*} Paper presentation/ Group project /Seminars/ Review papers

SEE- Semester End Examination (50 Marks)

Bloom's Category	SEE Marks (50)			
Remember	04			
Understand	26			
Apply	20			

ELEMENTS OF MECHANICAL ENGINEERING

 Course Code
 : 21MEE13A/23A
 Credits
 : 03

 L:T:P:S
 : 3:0:0:0
 CIE Marks
 : 50

 Exam Hours
 : 03
 SEE Marks
 : 50

COURSE OUTCOMES: On completion of the course, student would be able to:

CO1	Apply the concepts of conventional and non-conventional energy systems to design and develop alternate source of energy production.
CO2	Analyze the different types of IC engines and refrigeration systems and solve problems related to them.
CO3	Apply appropriate manufacturing techniques for product development in consequent to the professional Engineering practice in Mechanical Engineering.
CO4	Apply the concepts of advanced technology and visualize various ways to create the development of products with the aid of modern tools.
CO5	Understand the impact of various systems, processes and solutions of mechanical engineering insocietal and Environmental context.
CO6	Analyze the different Engineering materials for their respective application in various engineering fields and study about their manufacturing processes.

Mapping of Course outcomes to Program outcomes:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	1	1	-	-	-	-	1	1	ı
CO2	3	3	-	-	-	-	-	-	-	-	-	-
CO3	3	-	3	-	-	1	-	-	-	-	-	-
CO4	3	-	3	-	1	-	-	-	-	1	-	-
CO5	3	-	-	-	-	1	1	-	-	-	-	1
CO6	3	-	-	-	-	-	-	-	-	-	-	-

Syllabus

Module No	MODULE CONTENTS	Hrs	COs
	Introduction- Various Energy demands in India. Solar Energy- Types of Solar		
	Energy Utilization, Solar Energy application- Solar Water heater, Space		
	heating of buildings, Solar cooking, Solar in Agriculture.		
	Wind Power: Utilization of Wind power and hydel power for electric power		
1	generation, Installed capacity of hydel and Wind power in India.	08	CO1
	Bio-diesel a future Technology- Growth in Global Market, advantages,		
	disadvantages, Jatropha biodiesel in India, Process involved in Modern		
	Biodiesel production, Electrical Power generation from Bio-fuels.		
	Steam Formation and Application: Formation of steam and thermodynamic		
	properties of steam. Simple problems using steam tables. Application of steam in		
	power generation industry, processing industries.		
	Practical session/Practical Case study:		
	Solar Cooking system in ShirdiSai temple		
	Solar deployment by MNRE		
	• Visit to Roto-Dynamics Lab and understanding working of water turbines		
	Self - assessment:		
	• Survey on Globally implemented waste-to-energy plant and possibilities in		
	India		
	Survey on Energy production from Gravity		

2	Parts of IC Engines, Working of Four stroke petrol and four stroke diesel engine, Working of Two-stroke Engine. Microprocessor based Engine Management system, Battery Ignition system, Anti-lock braking system, Parking Assist systems, Automatic Suspension control, Electric vehicles- EV batteries and drive Motors, Hybrid vehicles and its types, Telematics. Practical Case study/Practical Session: Assembly and disassembly of Engine components Case study GM, Nissan, Ford, Nelco vehicles Self- assessment: Mechatronics and its future Mechatronics in Automotive application	08	CO2
3	Introduction- IC Engine Terminologies, Definition and Calculation on IP, BP, FP, SFC and various Efficiencies for IC Engine- Problems. Design of IC engine components- Bore and length of cylinder, thickness of cylinder head-Problems, Design considerations while designing Piston, Connecting rod and Crank shaft- Only Theory HVAC & R- Modern Refrigerants, Vapour Compression Refrigeration cycle, Domestic Refrigerator. Basic Air cycle, Summer and Winter Air conditioning systems, Psychrometric chart, Parameters to consider while calculating Cooling load and Heating load for building, Split AC unit. Practical Session: Visit to Energy Conversion Lab- Understanding cut section of Engines, Explaining Calculating various engine parameters (demo) Visit to Heat transfer Lab- Understanding VCR & AC cycle (demo) and Showing sample calculation for Room heating and cooling load calculation (demo). Self- assessment:	10	CO2, CO5
	Understand HVAC in Car Conventional Machining- Lathe, Drilling and Milling operations- Working Principles CNC- Definition, Components of CNC Turning centers and Machining centers, Steps involved in CNC programming, Advantages and disadvantages.		
4	 Robotics- Anatomy of robot. Robot configurations and links, Joint scheme and notation of robot, Sensors used in Robots, Types of End effectors, Application of Robot in Industries. NTM- Comparison between conventional and non-conventional machining, Classification, LBM- Sketch, working, advantage, disadvantage and application, WJM- Sketch, working, advantage, disadvantage and application. Practical Session: Visiting Advanced Manufacturing Lab and understanding the CNC Turning and Machining process Visiting Machine shop Lab- understanding tradition machining Self- assessment: 	9	CO3, CO4
	Identify the benefits of digital manufacturing Engineering Materials- Introduction, classification, Stress, Strain and Hooke's Law		
_	Composites- Introduction, Classification, Metal Matrix composites (MMC) - MMC preparation by Casting process and Powder Metallurgy. Advantages, Disadvantages and Applications of MMC,		
5	Nano composites- Introduction, Synthesis by Top and Bottom down approach, Advantages, Disadvantages and Applications. Rapid Prototyping- Definition, Various RP Techniques, Methodology in RP, Application in various Engineering fields- Medical, Automobile. Practical Session:	9	CO4, CO6

- Preparation of Composite laminates for Automotive and Aerospace application using different Reinforcement
 Testing of Composite materials in Material Testing lab (demo)
 Self- assessment:
 Study based on Current and future trends of using composites
- TEXT BOOKS:

Module-1

- 1. G. D. Rai, Non Conventional Energy Sources, Khanna Publishers, Fouth Edition- 2008, ISBN No. 81-7409-073-8
- 2. Jan C.J. Bart, N Palmeri, Stefano Cavallaro, Biodiesel Science and Technology: From Soil to Oil, CRC Press- Wood head Publishing Limited, 2010, ISBN 978-1-4398-2730-7

Module-2

- 1. K. R. Gopalakrishna, Elements of Mechanical Engineering, Subhas Publications, Bangalore, 2017, ISBN-13: 5551234091781
- 2. Tom Denton, Automobile Electrical and Electronic systems, ELSEVIER, 3rd edition, 2004, ISBN 0750662190

Module-3

- 1. K. R. Gopalakrishna, Elements of Mechanical Engineering, Subhas Publications, Bangalore, 2017, ISBN-13: 5551234091781
- 2. R S Khurmi and J K Gupta, A Text book Machine Design, EURASIA PUBLISHING HOUSE (PVT.) LTD., 2005
- 3. P K Ananthanarayanan, Basic Refrigeration and Air conditioning, Tata McGraw Hill Publication, 2005, ISBN 0-07-049500-9
- 4. Edward G Pita, Air conditioning principles and systems: an energy approach, Prentice Hall, 4th edition, ISBN 0-13-092872-0

Module-4

- 1. M. P. Groover, Automation, Production System & Computer Integrated Manufacturing, Person India, 4th edition, ISBN-13: 978-9332572492
- 2. Vijay K Jain, Advanced Machining Processes, Allied Publishers Pvt. Limited, 2002, ISBN 81-7764-294-4

Module-5

- 1. Autarkaw, Mechanics of Composite Materials, 2nd Edition,CRC Press Published November 2, 2005,ISBN 9780849313431
- 2. Frank W Liou, Rapid Prototyping and Engineering Applications: A Toolbox for Prototype Development, 2016,ISBN-13: 978-0849334092

Assessment Matrix

CIE- Continuous Internal Evaluation for theory (50 Marks)

Bloom's Category	Tests(25)	Assignment(10)	Quiz(5)	Alternative Assessment(10)
Remember	10			
Understand	10	3		
Apply	05	4	5	10
Analyze		3		
Evaluate				
Create				

^{*} Alternative Assessment: Lab report writing, Paper writing etc.

SEE – Semester End Examination (50 Marks)

Bloom's Category	SEE Marks
Remember	15
Understand	15
Apply	10
Analyze	10
Evaluate	
Create	

ELEMENTS OF CIVIL ENGINEERING

 Course Code
 : 21CIV14A/21CIV24A
 Credits
 : 03

 L:T:P:S
 : 3:0:0:0
 CIE Marks
 : 50

 Exam Hours
 : 03
 SEE Marks
 : 50

Course Outcomes: At the end of the Course, the Student will be able to:

CO1	Summarize the scope of Civil Engineering and apply the laws of mechanics.
CO2	Apply the concept of moment and couple.
CO3	Determine the equilibrium of concurrent and non - concurrent force system
CO4	Analyze the behavior of ladder, wedge and stationary block under the action of frictional
	force
CO5	Identify the position of centroid and compute the moment of inertia of regular cross sections.
CO6	Interpret the relative motion between bodies.

Mapping of Course Outcomes to Program Outcomes:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	1	1	-	-	-	-	-	-	-	1	3	-
CO2	3	2	1	1	-	-	-	-	1	-	-	1	3	-
CO3	3	2	1	1	-	-	-	-	1	-	-	1	3	-
CO4	3	2	1	1	-	-	-	-	-	-	-	1	3	-
CO5	3	2	1	1	-	-	-	-	-	-	-	1	3	-
CO6	3	2	1	1	-	-	-	-	-	-	-	1	3	-

Module	Contents of Module	Hrs	Cos
No			
1	SCOPE OF CIVIL ENGINEERING Housing, Roads, Bridges and Dams, Basic Introduction of Building Materials – cement, bricks/blocks, aggregate(s), timber, steel, composites, Components of a structure - Substructure, Super structure and Finishes. INTRODUCTION TO ENGINEERING MECHANICS Principle of statics, Particle, continuum, Rigid body, Force and its characteristics, Types of forces and classification of force systems, Principle of physical independence of forces, Principle of transmissibility of forces, Principle of superposition of forces, Composition of forces - Definition of Resultant; Composition of coplanar concurrent force system, Parallelogram law of forces, Resolution of forces.	10	CO1
2	MOMENT OF A FORCE Couple, Characteristics of couples, Varignon's theorem of moments, Composition of coplanar- non-concurrent force system, Equivalent force - couple system, Numerical problems on composition of coplanar non- concurrent force systems. EQUILIBRIUM OF CONCURRENT FORCE SYSTEM Equilibrium of concurrent, parallel and general forces in a plane, equilibrium of three forces in a plane, Definition of equilibrant, Lami's theorem; Resultant and equilibrium of concurrent and parallel forces in space, Numerical problems on equilibrium of coplanar – concurrent and non-concurrent force systems.	8	CO2, CO3

3	EQUILIBRIUM OF NON- CONCURRENT FORCE SYSTEM Introduction to beams, Types of loads and supports, Support reactions, statically determinate beams with point load (normal and inclined) and uniformly distributed/varying loads, Numerical problems. FRICTION Friction-static friction, Laws of friction, Limiting friction, Angle of friction, angle of repose, Impending motion on horizontal and inclined planes, Ladder and block friction, Numerical problems.	8	CO3, CO4
4	CENTROID Centroid of line and area, Centroid of regular figures, Locating the centroid of triangle, semicircle, quadrant of a circle and sector of a circle using method of integration, centroid of composite sections; Numerical problems. KINETICS Newton's second law of motion and D'Alemberts principle for rectilinear motion of a particle, Numerical problems.	9	CO5, CO6
5	MOMENT OF INERTIA Second moment of area, polar moment of inertia, Radius of gyration, Perpendicular and Parallel axis theorems, Moment of Inertia of rectangular, circular and triangular areas from method of integration, composite sections, Numerical problems. KINEMATICS Definitions, Displacement, average velocity Instantaneous velocity Speed— Acceleration - Average acceleration — Variable acceleration, Acceleration due to gravity — Newton's Laws of Motion.	9	CO5, CO6

TEXT BOOKS

- 1. Elements of Civil Engineering and Engineering Mechanics by M.N.Shesha Prakash and Ganesh.B.Mogaveer, PHI Learning, 3rdRevisededition(2014)
- 2. Engineering Mechanics-Statics and Dynamics by A Nelson, Tata McGraw Hill Education Private Ltd, New Delhi, 2009.
- 3. Elements of Civil Engineering (IV Edition) by S.S.Bhavikatti, New Age International Publisher, New Delhi, 3rd edition 2009

REFERENCE BOOKS

- 1. Engineering Mechanics by S.Timoshenko, D.H.Young, and J.V.Rao, TATA McGraw-Hill Book Company, New Delhi.
- 2. Beer FP and Johnson ER, "Mechanics for Engineers- Dynamics and Statics"- 3rd SI Metric edition, Tata McGraw Hill. –2008.
- 3. Shames I H, "Engineering Mechanics-Statics & Dynamics"-PHI-2009.

Assessment Matrix

CIE Continuous Internal Evaluation (50 Marks)

Blooms Category	Tests	Assignment 1	Assignment 2	Quiz 1	Quiz 2
Marks out of 50	25	7.5	7.5	5	5
Remember	-	-	-	3	2
Understand	05	-	-	2	3
Apply	10	3	2	-	-
Analyze	10	4.5	5.5	-	-
Evaluate	-	-	-	-	-
Create	-	-	-	-	-

SEE-Semester End Examinations (50 Marks)

Blooms Category	SEE Marks
Remember	-
Understand	10
Apply	20
Analyze	20

Percentage Evaluation of Various Blooms' levels (50 Marks)

Bloom's Category	CIE	SEE	Total	%
Remember	5		05	5%
Understand	10	10	20	20%
Apply	15	20	35	35%
Analyze	20	20	40	40%
Evaluate	-	-	-	-
Create	-	-	-	-
Total	50	50	100	100%

BASIC ELECTRICAL ENGINEERING

 Course Code
 : 21EEE15A/21EEE25A
 Credits
 : 03

 L:T:P:S
 : 3:0:0:0
 CIE Marks
 : 50

 Exam Hours
 : 03
 SEE Marks
 : 50

Course Outcomes: On completion of the course, student will be able to:

CO1	Solve DC and AC circuits by using the basic knowledge of mathematics, science and electrical
	engineering.
CO2	Examine the single phase and three phase systems and compute various parameters.
CO3	Investigate the basic construction, principle and applications of energy conversion devices namely
	DC & AC machines and transformers
CO4	Illustrate power generation systems in India, economic survey report, design wiring as per
	specifications, earthling systems, and safety principles and familiarize with the different tariff
	systems for energy conservation
CO5	Formulate the characterization methods of batteries and interpret concepts of battery performance
CO6	Analyze the impact of electrical vehicles in societal and environmental contexts for sustainable
	development

Mapping of Course Outcomes to Program Outcomes:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	1	1	-	-	1	-	1	-	-	1
CO2	2	3	1	1	-	-	1	-	1	-	-	1
CO3	2	3	-	2	-	-	-	-	1	-	-	-
CO4	1	3	1	2	-	1	1	-	1	1	-	1
CO5	1	2	1	-	-	1	1	-	2	1	-	1
CO6	1	3	-	-	-	1	3	-	1	1	-	1

	SYLLABUS		
Module No.	Module Content	Hours	Cos
1	DC Circuits Introduction to electrical engineering Concepts of DC circuits—ohm's Law—resistance, temperature coefficient of resistance, power and energy—series and parallel circuits—star/delta conversion—Kirchhoff's Laws	9	CO1
2	AC Circuits Concepts of AC circuits—rms value, average value, form factor and peak factor—single phase circuits (R,L,C,RL,RC,RLC)—power triangle—power factor Concepts of Three phase circuits—Relation between line and phase quantities in star and delta connected balanced systems—measurement of power and power factor by two wattmeter method	9	CO1, CO2
3	Electromagnetic Induction and Energy Conversion Faraday's law of electromagnetic induction—self and mutually induced emfs— statically induced and dynamically induced emfs Construction and working principle—DC machines—single phase transformer—synchronous generator—three phase induction motor	9	CO1, CO2, CO3
4	Electric Utilities and Protection Different sources of electrical energy through economic survey report—single line diagram of power system— electrical tariff—Energy audit—energy		

	conservation-basic elements in electrical wiring (service mains, meter board	9	CO2,
	and distribution board, concealed conduit and two way wiring)- protection		CO3,
	(Fuse & MCB)– electric shock and prevention– earthing		CO4
	Measurement and Electrochemical Power Sources		
5	Single phase energy meter Faradays's laws of electrolysis, primary and secondary batteries, classification of secondary batteries based on their use, internal resistance and capacity of a cell, efficiencies of the cell, Battery ratings, voltage regulators, changing systems, main operated battery changers and application, uninterruptable power systems (UPS)- simple problems Discussion on Electric Vehicle Charging Infrastructure Implementation in India.	9	CO1, CO5, CO6

Text Books:

- 1. DC Kulshreshtha, "Basic Electrical Engineering", TMH, Revised second edition, 2019.
- 2. Metha. V.K, Rohit Metha, "Basic Electrical Engineering", Fourteenth edition, S.Chand Publishing, Revised edition 2012.
- 3. Bhattacharya.S.K, "Basic Electrical and Electronics Engineering", Pearson Education, 2011
- 4. J. B. Gupta, "A Course in Electronic and Electrical Measurements", S. K. Kataria & Sons, Delhi, 2011.
- 5. Handbook for EV Charging Infrastructure Implementation by GOI Ministry of Power, Version-1, 2021.

Reference Books:

- 1. Dash.S.S, Subramani.C, Vijayakumar.K, "Basic Electrical Engineering", Second edition, Vijay Nicole Imprints Pvt. Ltd, 2015
- 2. P.S. Dhogal, "Basic Electrical Engineering Vol. I& II", 42nd Reprint, McGraw-Hill, 2012
- 3. BL-Theraja, "A TextBook of Electrical Technology: Basic Electrical Engineering", volume 1, reprint 2013.
- 4. J.B.Gupta, "Explanations/Solutions to an Integrated Course in Electrical Engineering", S. K. Kataria & Sons, 2018.

Assessment Matrix

CIE- Continuous Internal Evaluation (50 Marks)

Bloom's Category	Test	Assignment	Quiz-1	Quiz-2	Alternate Assignment*
Marks(50)	25	5	5	5	10
Remember	2	-	-	-	-
Understand	3	-	1	1	-
Apply	15	3	2	2	6
Analyze	5	2	2	2	4
Evaluate	-	-	-	-	-
Create	-	-	-	-	-

SEE- Semester End Examination (50 Marks)

Bloom's Category	SEE Marks
Remember	4
Understand	6
Apply	30
Analyze	10
Evaluate	-
Create	-

^{*}Seminars / workshops / presentations / online courses / webinars/ case studies etc.,

ENGINEERING PHYSICS LAB

 Course Code
 : 21PHL16A/26A
 Credits
 : 01

 L:T:P:S
 : 0:0:1:0
 CIE Marks
 : 50

 Exam Hours
 : 03
 SEE Marks
 : 50

Course Outcomes: On completion of the course, student would be able to:

CO1	Demonstrate the usage of measuring instruments and techniques related to lab work.
CO2	Apply the practical knowledge using the experimental methods to correlate with the
	theoretical concepts.
CO3	Examine and interpret the experimental data using graphical techniques.
CO4	Acquire skills required for team work, technical communication and discussions

Mapping of Course Outcomes to Program Outcomes:

O/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	ı	ı	-	-	1	ı	-	-	-	-
CO2	3	2	-	-	-	-	-	-	-	-	-	-
CO3	3	2	1	1	-	-	1	ı	-	-	-	-
CO4	3	2	-	-	-	-	-	-	1	1	-	1

Exp. No	Experiments	Cos
1	Determination of Planck 's constant using LED	
2	Stefan's Law: To verify Stefan's Law	
3	B – H Curve: To draw the B – H curve and to determine the coercivity and retentivity of the given ferromagnetic material	
4	Dielectric constant: To determine the dielectric constant of given dielectric by charge and discharge method	
5	Laser Diffraction: To determine the wavelength of Laser using grating	70,
6	Numerical Aperture: To determine the numerical aperture of Optical Fiber	CO1, CO2, CO3, CO4
7	Fermi Energy: To determine the Fermi energy of copper.	02,
8	Zener Diode Characteristics: To study the V-I characteristics of Zener diode and the reverse Zener break down voltage	201, C
9	Photodiode Characteristics: To study the V-I characteristics of photo diode for different light intensity in reverse bias condition	
10	Energy Gap: To find the energy gap of a given semiconductor.	
11	Hall Effect: To measure Hall Coefficient of materials.	
12	Resistivity: Four Probe method	
13	Particle Size Determination – Using LASER	

Note: To perform a minimum of 12 experiments in a semester

Assessment Matrix

CIE- Continuous Internal Evaluation (50 Marks)

Bloom's Category	Performance(day to day)	Internal test
Marks (out of 50)	20	30
Understand	05	06
Apply	08	10
Analyze	04	10
Evaluate	03	04

SEE- Semester End Examination (50 Marks)

Bloom's Category	SEE Marks
Understand	15
Apply	20
Analyze	10
Evaluate	05

BASIC ELECTRICAL ENGINEERING LAB

 Course Code
 : 21EEL17A/27A
 Credits
 : 01

 L:T:P:S
 :0:0:1:0
 CIE Marks
 : 50

 Exam Hours
 : 03
 SEE Marks
 : 50

Course Outcomes: On completion of the course, student would be able to:

CO1	Apply the basic knowledge of mathematics, science and electrical engineering to solve for equivalent resistance by network reduction techniques and basic laws.
CO2	Analyse the behavior of DC machine, single phase transformer and 3 phase induction motor.
CO3	Apply the contextual knowledge to assess balanced three phase load and energy consumption for single phase load.
CO4	Investigate on safety aspects, wiring and consumption of electrical power in domestic installations.

Mapping of Course Outcomes to Program Outcomes:

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	2	-	ı	-	-	2	-	-	-
CO2	-	3	-	3	-	1	-	-	2	-	-	-
CO3	3	2	-	-	-	1	-	-	2	-	-	-
CO4	-	1	-	3	-	-	-	_	2	-	-	-

Exp. No.	Experiments	COs			
1	Verification of ohm's law				
2	Verification of Kirchhoff's laws				
3	Determination of equivalent resistance using series-parallel combination				
4	Determination of equivalent resistance using star-delta transformation				
5	Speed control of DC shunt motor				
6	Load test on DC shunt motor				
7	Speed control of 3 \phi induction motor using vfd and measurement of f, V & I				
8	Load test on single phase transformer				
9	Measurements of electrical quantities- voltage, current, power and power factor in RLC circuit				
10	Measurement of 3φ power using two wattmeter method				
11	Residential house wiring using switches, fuse, indicator and lamp				
12	Staircase wiring	CO4			
13	Study of circuit protective devices (MCB and Fuse)				
14	Study and troubleshooting of electrical equipment (fan, iron box and mixer)				

Assessment Matrix

CIE- Continuous Internal Evaluation (50 Marks)

Bloom's Category	Performance(day to day)	Internal Test
Marks (Out of 50)	20	30
Remember	04	04
Understand	06	06
Apply	06	10
Analyze	04	10
Evaluate	-	-
Create	-	-

SEE- Semester End Examination (50 Marks)

Bloom's Category	SEE Marks
Remember	6
Understand	10
Apply	18
Analyze	16
Evaluate	-
Create	-

PROFESSIONAL WRITING SKILLS IN ENGLISH

(Common to Physics and Chemistry cycles in the second semester)

Course Code: 21AEC21A

L: T: P: S - 1:0:0:0

Exam Hours: 2

Credits: 01

CIE Marks: 50

SEE Marks: 50

Course Outcomes: At the end of the course, the student will be able to:

CO1	Recall strategies to improve vocabulary
CO2	Outline the different purposes and various styles of writing
CO3	Apply the principles of 7Cs of Communication to workplace correspondence
CO4	Analyse text and infer information using the sub skills of reading.

Mapping of Course Outcomes to Program Outcomes:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	-	-		-	-	-	1	1	2	3	1	3
CO2	ı	-	-	-	ı	ı	ı	ı	2	3	1	3
CO3	ı	-	-	_	ı	ľ	ı	ı	2	3	1	3
CO4	-	-	-	_	-	-	-	-	2	3	1	3

Module No.	Module Contents	Hours	COs
	Writing Skills:		
	Types of Writing		
	7Cs of Communication	4	CO1
1	Language & Vocabulary:	4	CO3
	Vocabulary in context		CO4
	Ways to enhance vocabulary		
	Verbal Ability: One word substitution, Synonyms exercises		
	Descriptive writing:		
	Paragraph writing		
	Expansion of ideas		
2	Use of Discourse markers, Cohesive devices. Transition	6	CO3
2	words.	6	CO4
	Narrative writing:		
	Writing about past events, story writing		
	Verbal Ability: Jumbled Paragraph, Precis Writing		

3	Analytical Writing: Analysing charts, tables, trends, current events, Movie review Verbal Ability: Reading Comprehension exercises. Sub skills of Reading	4	CO2 CO3 CO4
4	Business Writing: General writing vs Business writing. Types of Business writing. Email etiquette Emails of complaint, apology, request, appreciation, fixing/cancellation of business appointments Designing Product Brochure Verbal Ability: Exercises on identifying facts, inferences and judgements	4	CO2 CO3 CO4
5	Business Writing: Report writing Resume building Verbal Ability: Verbal Analogy	4	CO3 CO4

REFERENCE BOOKS:

- 1. Basic Business Communication, Flately & Lesikar, Tata Mc Graw Hill, 10th Edition.
- 2. Business Communication, P.D Chaturvedi & Mukesh Chaturvedi , Pearson Education.
- 3. The Skill of Communicating, Bill Scott & Helen Wilkie, Jacob Books.
- 4. Communication Skills: A Workbook. Sanjay Kumar, Pushp Lata

Assessment Matrix

CIE- Continuous Internal Evaluation (50 Marks)

Bloom's Category	Tests	Movie Review Assignment	Brochure Designing
Marks (out of 50)	20	15	15
Remember		-	-
Understand	5	-	-
Apply	10	10	5
Analyze	5	5	-
Evaluate	-	-	-
Create	-	-	10

SEE- Semester End Examination (50 Marks)

Bloom's Category	Test
Remember	10
Understand	10
Apply	20
Analyse	10
Evaluate	-
Create	-

ENTREPRENEURSHIP DEVELOPMENT-1

Course Code : 21AEC12A/22A Credits : 01
L: T: P:S : 1:0:0:0 CIE Marks : 50
Exam Hours :-2 SEE Marks : 50

Course Outcomes: At the end of the Course, the Student will be able to:

CO1	Identify passion and entrepreneurial style
CO ₂	Gain an understanding about identifying problems worth solving through venture
CO3	Analyze customer segment, Niche, and early adopters
CO4	Understanding and creating value proposition
CO5	Creating business model
CO6	Develop entrepreneurship among the students through sequential process of
	identifying problem, design thinking, identifying target customer and create
	business model.

Mapping of Course Outcomes to Program Outcomes:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	-	3	-	-	-	3	1	2	-	-	-	1
CO2	-	3	-	-	-	3	1	2	-	-	-	0
CO3	-	3	-	-	-	3	1	2	-	-	-	0
CO4	-	3	-	3	-	3	1	2	-	-	-	3
CO5	_	3	-	3	-	3	1	2	-	-	-	3
CO6	-	3	-	3	-	3	1	2	-	-	-	3

Module No.	Contents of Module	Hrs	Cos
1	Introduction: Finding Your Flow, Effectuation, Principal's of Effectuation, Identify Your Entrepreneurial Style	3	CO1
,	Identify Problems Worth Solving, Design Thinking, Look for Solution, Present the Problem You Love.	3	CO2
1 1	Customers and Markets, Identify Your Customer Segments and Niche, Identify Jobs, Pains, and Gains and Early Adopters,	3	CO3
4	Craft Your Value Proposition, Outcome-Driven Innovation (ODI), Present Your Value Proposition Canvas	3	CO4
	Basics of Business Model and Lean Approach, Sketch the Lean Canvas, Risks and Assumptions, Present Your Lean Canvas	3	CO5 CO6

Suggested Case Studies:

- 1. Niranjan Karagi, Nir Nal, Karnataka Boy Niranjan Karagi Develops World's Cheapest Water Purifier (kalingatv.com)
 - 2. From Multi-Purpose Crutches to Bullet Tractors: 8 Brilliant Innovations by Indians You Must Know From Multi-Purpose Crutches to Bullet Tractors: 8 Brilliant Innovations by Indians You Must Know The Better India

Books for reference

- 1. Effectual entrepreneurship, by Stuart Read (Author), Saras Sarasvathy (Author), Nick Dew (Author), Robert Wiltbank (Author), September 2016
- 2. Running Lean 2e: Iterate from Plan A to a Plan That Works (Lean Series), by Ash Maurya
- 3. Value Proposition Design: How to Create Products and Services Customers Want (The Strategyzer Series) 30 October 2014 by Alexander Osterwalder (Author), Yves Pigneur (Author), Gregory Bernarda

Assessment Matrix

CIE – Continuous Internal Evaluation – 50 Marks

Assessment format Weightage to be		Comments		
	awarded			
Quiz	20 Marks	To be administered as a part of CIE		
Venture Milestone	30 Marks	Student should create VM 1, VM2, VM3		
		(Assignment 1,2,3)		

- VM1- Presentation- Forming team, identifying problem, identifying solution (Module 1& 2)
- VM2- Presentation- Validate Solution Identify customer segment, and early adopter, Create value proposition canvas (Module-3 & 4)
- VM3- Presentation -Create business plan using lean canvas (Module-5)

SEE- Semester End Examination (50 Marks) – Practical

Bloom's Category	Tests
Remember	10
Understand	10
Apply	10
Analyze	5
Evaluate	5
Create	10

NEW HORIZON PUBLIC SCHOOL

Email: principalnhps@newhorizonindia.edu

Tel: +91-80-2526 1735

NEW HORIZON PRE UNIVERSITY COLLEGE

Email: principalnhpuc@newhorizonindia.edu

Tel: +91-80-2542 9361

NEW HORIZON COLLEGE

KASTURINAGAR

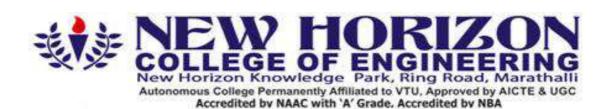
Email: principalnhck@newhorizonindia.edu

Tel: +91-80-2542 9361

NEW HORIZON COLLEGE

MARATHALLI

Email: principalnhcm@newhorizonindia.edu

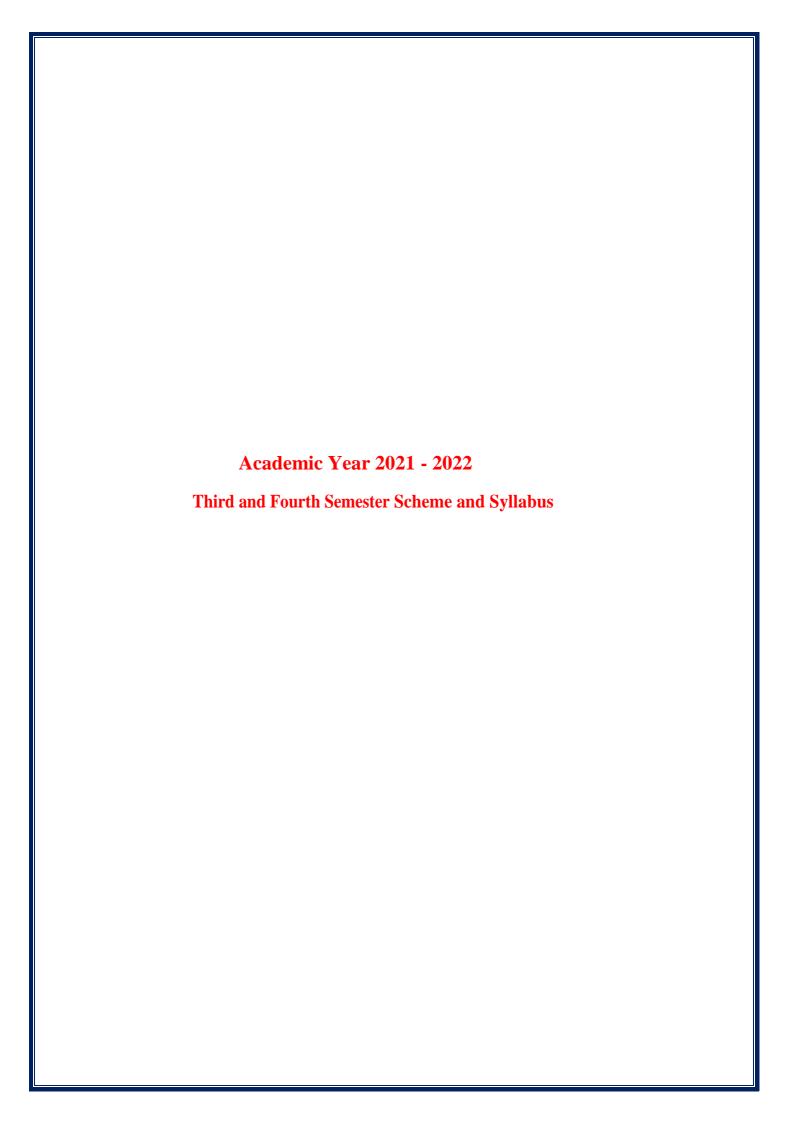

Tel: +91-80-6629 7777

NEW HORIZON COLLEGE OF ENGINEERING

Email: principal@newhorizonindia.edu

Tel: +91-80-6629 7777

www.newhorizonindia.edu


DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING

SCHEME AND SYLLABUS

BATCH: 2020-24

CREDITS: 175

[2018 Scheme]

CONTENTS

1.	Institution Vision, Mission, Goals and Quality policy	4
2.	Department Vision, Mission and Program Educational Objectives (PEO)	5
3.	Program Outcomes (PO) with Graduate Attributes	6
4.	Program Specific Outcomes (PSOs)	6
	SCHEME	
5.	Scheme of Third Semester B. E	7
6.	Scheme of Fourth Semester B. E	8
	SYLLABUS	
7.	Syllabus of Third Semester BE:	9
	a) Applied Mathematics-III	9
	b) Aadalitha Kannada / Vyavaharika Kannada	12
	c) Economics for Engineers	14
	d) Digital Electronics	16
	e) Data Structures using C	18
	f) Python Programming	20
	g) Digital Electronics Lab	22
	h) Data Structures using C Lab	24
	i) Python Programming Lab	26
	j) Mini Project - I	29
8.	Syllabus of Fourth Semester BE:	
0.	a) Mathematical Statistics	31
	b) Life skills for Engineers	34
	c) Environmental Science and Awareness	36
	d) Introduction to Data Science	38
	e) Object Oriented Programming with Java	40
	f) Database Management System	42
	g) Object Oriented Programming with Java Lab	45
	h) Database Management System Lab	47
	i) Mini Project - II	53
9.	Appendix	
	Appendix A Outcome Based Education	59
	Appendix B Graduate Parameters as defined by National Board of Accreditation	60
	Appendix C Bloom's Taxonomy	62

INSTITUTION

Vision

To emerge as an institute of eminence in the fields of engineering, technology and management in serving the industry and the nation by empowering students with a high degree of technical, managerial and practical competence.

Mission

To strengthen the theoretical, practical and ethical dimensions of the learning process by fostering a culture of research and innovation among faculty members and students.

To encourage long-term interaction between the academia and industry through their involvement in the design of curriculum and its hands-on implementation.

To strengthen and mould students in professional, ethical, social and environmental dimensions by encouraging participation in co-curricular and extracurricular activities.

To develop value based socially responsible professionals for the betterment of the society

Quality Policy

To emerge as an institute of eminence in the fields of engineering, technology and management in serving the industry and the nation by empowering students with a high degree of technical, managerial and practical competence.

Values

- ❖ Academic Freedom
- Innovation
- Integrity

- Professionalism
- Inclusiveness
- Social Responsibility

DEPARTMENT of AI & ML

Vision

To develop an outstanding AI and ML professionals with profound practical, research & managerial skills to meet ever changing Industrial Social and Technological needs of the Society

Mission

To disseminate strong theoretical and practical exposure to meet the emerging trends in the industry.

To promote a freethinking environment with innovative research and teaching-learning pedagogy.

To develop value based socially responsible professionals with high degree of leadership skills will support for betterment of the society.

Program Educational Objectives (PEOs)

PEO1	Develop and excel in their chosen profession on technical front and progress towards advanced continuing education or Inter-disciplinary Research and Entrepreneurship
PEO2	Become a reputed innovative solution provider- to complex system problems or towards research or challenges relevant to Artificial Intelligence and Machine learning
PEO3	Progress as skilled team members achieving leadership qualities with trust and professional ethics, pro-active citizens for progress and overall welfare of the society

PEO to Mission Statement Mapping

Mission Statements	PEO1	PEO2	PEO3
To disseminate strong theoretical and practical exposure to meet the emerging trends in the industry.	3	3	2
To promote a freethinking environment with innovative research and teaching-learning pedagogy.	2	3	2
To develop value based socially responsible professionals with high degree of leadership skills will support for betterment of the society.	2	3	3

Program Outcomes (POs) with Graduate Attributes

- **PO1** Engineering knowledge: Apply the knowledge of mathematics, science, Engineering fundamentals, and an Engineering specialization to the solution of complex Engineering problems in Computer Engineering.
- **Problem analysis:** Identify, formulate, review research literature, and analyze complex Engineering problems in Computer Engineering reaching substantiated conclusions using first principles of mathematics, natural sciences, and Engineering sciences.
- **PO3** Design / Development of Solutions: Design solutions for complex Engineering problems and design system components or processes of Computer Engineering that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations.
- **PO4** Conduct Investigations of Complex Problems: Use research based knowledge and research methods including design of experiments in Computer Engineering, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- **Modern Tool Usage:** Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modeling to complex Engineering activities in Computer Engineering with an understanding of the limitations.
- **PO6** The Engineer and Society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice in Computer Engineering.
- **PO7** Environment and Sustainability: Understand the impact of the professional Engineering solutions of Computer Engineering in societal and Environmental contexts, demonstrate the knowledge of, and need for sustainable development.
- **PO8** Ethics: Apply ethical principles and commit to professional ethics, responsibilities, and norms of the Engineering practice.
- **PO9** Individual and Team Work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- **PO10** Communication Skills: Communicate effectively on complex Engineering activities with the Engineering community and with society, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- **PO11** Project Management and Finance: Demonstrate knowledge and understanding of the Engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary Environments.
- **PO12 Life-long Learning:** Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Program Specific Outcomes (PSOs)

A graduate of the Computer Engineering Program will demonstrate

PSO1: Develop models in Data Science, Machine learning, Deep learning and Bigdata technologies, using acquired AI knowledge and modern tools.

PSO2: Formulate solutions for interdisciplinary problems through acquired programming knowledge in the respective domains complying with real-time constraints.

THIRD SEMESTER-SCHEME

				Cr	edit Di	istributi	ion			Marks		
S. No	Course Code	Course	BOS	L	Т	Р	S	Overall Credits	Contact Hours	CIE	SEE	TOTAL
1	20AIM31A	Applied Mathematics- III	BS	2	1	0	0	3	4	50	50	100
2		Aadalitha Kannada / Vyavaharika Kannada	HSS	1	0	0	0	1	2	25	25	50
3		Economics For Engineers	HSS	2	0	0	0	2	2	25	25	50
4	20AIM33A	Digital Electronics	AI&ML	3	0	0	0	3	3	50	50	100
5	20AIM34A	Data Structures using C	AI&ML	3	0	0	0	3	3	50	50	100
6	20AIM35A	Python Programming	AI&ML	3	0	0	0	3	3	50	50	100
7	20AIL36A	Digital Electronics Lab	AI&ML	0	0	2	0	2	4	25	25	50
8	20AIL37A	Data Structures using C Lab	AI&ML	0	0	2	0	2	4	25	25	50
9	/IIAII 3XA	Python Programming Lab	AI&ML	0	0	2	0	2	4	25	25	50
10	20AIM39A	Mini Project - I	AI&ML	0	0	2	0	2	0	25	25	50
11	TUTIN/I ATT 3 T *	Basic Applied Mathematics-1	BS	0	0	0	0	0	2	25	25	50
12	19HSS171*	Essential English	BS	0	0	0	0	0	2	25	25	50
		Tot	al					23	29/ 33*	350/ 400*	350/ 400*	700/ 800*

^{*}For Lateral Entry Students Only

FOURTH SEMESTER-SCHEME

S.	Course Code			Cree	dit Dis	stribu	tion	Overall	Contact	Marks		
No	Course Code	Course	BOS	L	Т	P	S	Credits	Hours	CIE	SEE	TOTAL
1	20AIM41A	Mathematical Statistics	BS	2	1	0	0	3	4	50	50	100
2	20HSS422A	Life skills for Engineers	HSS	3	0	0	0	3	3	50	50	100
3	20HSS423A	Environmental Science and Awareness	HSS		ndator ourse	y	0	0	2	25	25	50
4	20AIM43A	Introduction to Data Science	AI&ML	3	0	0	0	3	3	50	50	100
5	20AIM44A	Object Oriented Programming with Java	AI&ML	3	0	0	0	3	3	50	50	100
6	20AIM45A	Database Management System	AI&ML	3	0	0	0	3	3	50	50	100
7	20AIL47A	Object Oriented Programming with Java Lab	AI&ML	0	0	2	0	2	4	25	25	50
8	20AIL48A	Database Management System Lab	AI&ML	0	0	2	0	2	4	25	25	50
9	20AIL49A	Mini Project - II	AI&ML	0	0	2	0	2	0	25	25	50
10	19DMAT41*	Basic Applied Mathematics-2	BS	0	0	0	0	0	2	25	25	50
11	19HSS272*	Constitution of India	HSS	0	0	0	0	0	2	25	25	50
		Total	l					21	26/ 30*	350/ 400*	350/ 400*	700/ 800*

*For Lateral Entry Students Only

APPLIED MATHEMATICS – III

 Course Code
 : 20AIM31A
 Credits: 3

 L: T: P
 : 2: 1: 0
 CIE Marks: 50

 Exam Hours:
 : 3
 SEE Marks: 50

Course Outco	mes: At the end of the Course, the Student will be able to:
CO#	COURSE OUTCOME
20AIM31A.1	Use appropriate numerical methods to solve algebraic equations and transcendental equations
20AIM31A.2	Solve initial value problems using appropriate numerical methods and also Evaluate definite integrals numerically
20AIM31A.3	Express the periodic functions as Fourier series expansion analytically and numerically.
20AIM31A.4	Solve the Continuous model problems using Fourier transforms. Solve the discrete model problems using Z-transforms
20AIM31A.5	Solve the discrete model problems using Fast Fourier transform
20AIM31A.6	Fit a suitable curve by the method of least squares and determine the lines of regression for a set of statistical data

Mapping of	Mapping of Course Outcomes to Program Outcomes													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
20AIM31A.1	3	3	3	3	3	-	3	-	-	-	3	3		3
20AIM31A.2	3	3	3	3	3	-	3	-	-	-	3	3		3
20AIM31A.3	3	3	3	3	3	-	-	-	-	-	3	3		3
20AIM31A.4	3	3	3	3	3	-	-	-	-	-	3	3		3
20AIM31A.5	3	3	3	3	3	-	-	-	-	-	3	3		3
20AIM31A.6	3	3	3	3	3	1	3	-	-	-	3	3		3
Corre	lation	level	s: 1-S	Slight	(Low)	2-1	Mode	rate(N	1ediu	m) 3-	Substa	ntial(H	ligh)	

Module	Module Contents	Hours	Cos
No			
1	Numerical Methods-1: Numerical solution of algebraic and transcendental equations: Regula-falsi method and Newton-Raphson Method-Problems. Interpolation: Newton's forward and backward formulae for equal intervals, Newton divided difference and Lagrange's formulae for unequal intervals (without proofs)-Problems.	9	CO1
2	Numerical Methods 2: Numerical solution of ordinary differential equations of first order and of first degree: Modified Euler's method and Runge-Kutta method of fourth-order-Problems. Milne's predictor and corrector methods-Problems. Numerical integration: Simpson's 1/3 rd rule, Simpson's 3/8 th rule, Weddle's rule (without proofs)-Problems. Applications: Application of numerical integration to velocity of a particle and volume of solids.	9	CO2
	Fourier series: Periodic function, Dirichlet's conditions, Fourier series of periodic functions of period 2π and arbitrary period 21, half range series. Fourier series and half Range	9	CO3

3	Fourier series of periodic square wave, half wave rectifier, full wave rectifier, Saw-tooth wave with graphical representation, practical harmonic analysis.		
4	Fourier Transforms: Infinite Fourier transforms, Fourier Sine and Cosine transforms, Inverse Fourier transform. Z - Transform: Definition, Z-transforms of some standard functions, properties, damping rule, shifting rule(without proof), initial and final value theorems, inverse Z- transforms. Applications: Solving difference equations using Z-transform.	9	CO4
5	Discrete Fourier Transform and Fast Fourier Transform: Definition of N-Point DFT, problems for 4-points and inverse DFT for four points only. FFT algorithm to compute the Fourier transforms 4-point only. Statistical Methods: Fitting of the curves of the form $y = a + b \times x$, $y = a + b \times x + c \times x^2$, $y = ae^{bx}$, $y = a \times x^b$, and $y = ab^x$ by the method of least square, Correlation and Regression, Regression coefficients, line of regression –Problems.	9	CO5, CO6

Text Books:

- 1. Erwin Kreyszig, Advanced Engineering Mathematics, Wiley-India Publishers, 10th Edition, 2014, ISBN: 978-81-265-5423-2.
- 2. B. S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 43rd Edition, 2014, ISBN: 978-81-7409-195-5.

Reference Books:

- 1. Glyn James, Modern Engineering Mathematics, Prentice Hall, 4th Edition, 2015, ISBN: 978-0-273-73409-3
- 2. B. V. Ramana, Higher Engineering Mathematics, McGraw Hill Education (India) Private Limited, 4th Edition, 2016, ISBN: 978-0-07-063419-0.
- 3. H. K. Dass, Advanced Engineering Mathematics, S. Chand & Company Ltd., 28th Edition, 2012, ISBN: 81-219-0345-9.
- 4. P. Bali and Manish Goyal, A Text Book of Engineering Mathematics, Laxmi Publications (P) Ltd., 9th Edition, 2014, ISBN: 978-81-318-0832-0.

CIE- Continuous Internal Evaluation (50 Marks)

Bloom's Category	Tests (25 marks)	Assignment 1 (7.5 Marks)	Assignment 2 (7.5Marks)	Quiz1 (05Marks)	Quiz2 (05 Marks)
Remember	5	2.5	2.5	-	-
Understand	5	2.5	2.5	-	-
Apply	10	2.5	2.5	05	05
Analyze	2.5	-	-	-	-
Evaluate	2.5	-	-	-	-
Create	-	-	-	-	-

SEE- Semester End Examination (50Marks)

Bloom's	Questions
Category	(50 marks)
Remember	10
Understand	10
Apply	20
Analyze	5
Evaluate	5
Create	-

ಆಡಕತ ಕನ್ನಡ

(Kannada for administration)

Course Code	: 20HSS324/424	Credits : 01
L: T: P	: 1:0:0	CIE Marks: 25
Exam Hours	: 2	SEE Marks: 25

ಆಡಳಿತ ಕನ್ನಡ ಅಧ್ಯಯಪದ ಕಲಿಕಾಂಶಗಳು

C01 ವಿದ್ಯಾರ್ಥಿಗಳು ಕನ್ನಡ ವ್ಯಾಕರಣದ ಬಗ್ಗೆ ಹಾಗೂ ಭಾಷಾ ರಚನೆ ನಿಯಮಗಳನ್ನು ಅರ್ಥೈಸಿಕೊಳ್ಳುತ್ತಾರೆ

C02 ಕನ್ನಡ ಭಾಷಾ ಬರಹದಲ್ಲನ ದೋಷಗಳು, ನಿವಾರಣಿ ಮತ್ತು ಲೇಖನ ಚಿಹ್ನೆಗಳನ್ನು ಅರಿತುಕೊಳ್ಳುವರು

C03 ಸರ್ಕಾರಿ ಮತ್ತು ಅರೆ ಸರ್ಕಾರಿ ಪತ್ರವ್ಯವಹಾರದ ಬಗ್ಗೆ ತಿಳುವಳಕೆ ಪಡೆಯುವರು

C04 ಭಾಷಾಂತರ ಮತ್ತು ಪ್ರಬಂಧ ರಚನೆ ಬಗ್ಗೆ ಆಸಕ್ತಿ ವಹಿಸಿಕೊಳ್ಳುವರು

CO - PO Mapping:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
COI	(20)	825	2		NEW		12	82	29	3	150	25
CO2	7-	55-55		0.00				100	*	3	290)	-63
CO3	-		8	10.00				15		3	125	52
CO4	8.40	1000	-		-		-	00	*	3	(F)	#S

ಪರಿವಿಡಿ (ಪಠ್ಯ ಮಸ್ತಕದಲ್ಲಿರುವ ವಿಷಯಗಳ ಪಟ್ಟಿ)

ಅಧ್ಯಾಯ -1 ಕನ್ನಡ ಭಾಷೆ-ಸಂಕ್ಷಿಪ್ತ ವಿವರಣೆ

ಅಧ್ಯಾಯ -2 ಭಾಷಾ ಪ್ರಯೋಗದಲ್ಲಾಗುವ ಲೋಪದೋಷಗಳು ಮತ್ತುಅವುಗಳ ನಿವಾರಣೆ

ಅಧ್ಯಾಯ -3 ಲೇಖನ ಚಿಹೈಗಳು ಮತ್ತು ಅವುಗಳ ಉಪಯೋಗ

ಅಧ್ಯಾಯ -4 ಪತ್ರ ವ್ಯವಹಾರ

ಅಧ್ಯಾಯ -5 ಆಡಳಿತ ಪತ್ರಗಳು

ಅಧ್ಯಾಯ -6 ಸರ್ಕಾರದ ಆದೇಶ ಪತ್ರಗಳು

ಅಧ್ಯಾಯ -7 ಸಂಕ್ಷಿಪ್ತ ಪ್ರಬಂಧ ರಚನೆ (ಪ್ರಿಸೈಸ್ ರೈಟಿಂಗ್),ಪ್ರಬಂಧ ಮತ್ತು ಭಾಷಾಂತರ

ಅಧ್ಯಾಯ -8 ಕನ್ನಡ ಶಬ್ದ ಸಂಗ್ರಹ

ಅಧ್ಯಾಯ -9 ಕಂಪ್ಯೂಟರ್ ಹಾಗೂ ಮಾಹಿತಿ ತಂತಜ್ಞಾನ

ಅಧ್ಯಾಯ -10 ಪಾರಿಭಾಷಿಕ ಆಡಳಿತ ಕನ್ನಡ ಪದಗಳು ಮತ್ತು ತಾಂತ್ರಿಕ /ಕಂಪ್ಯೂಟರ್ ಪಾರಿಭಾಷಿಕ ಪದಗಳು

ಆಡಳತ ಕನ್ನಡ ಪಠ್ಯಮಸ್ತಕದ ಲೇಖಕರು

ಡಾ. ಎಲ್. ತಿಮ್ಮೇಶ, ಪ್ರೋ. ವಿ . ಕೇಶವಮೂರ್ತಿ, ಪ್ರಕಟಣೆ : ಪ್ರಸಾರಾಂಗ, ವಿ.ತಾ.ವಿ.ಬೆಳಗಾವಿ

ಪರೀಕ್ಷೆಯ ವಿಧಾನ

ನಿರಂತರ ಆಂತರಿಕ ಮೌಲ್ಯಮಾಪನ (Continuous Internal Evaluation) : 25 ಅಂಕಗಳು ಸೆಮಿಸ್ಟರ್ ಪರೀಕ್ಷೆ (Semester End Examination) : 25 ಅಂಕಗಳು

Blooms Category	CIE (25)	SEE (25)
Remember	12	12
Understand	13	13

Vyavaharika Kannada (Kannada for use)

 Course Code
 : 20HSS325
 Credits: 1

 L: T: P
 : 2: 0
 CIE Marks: 25

 Exam Hours:
 : 2
 SEE Marks: 25

Course Out	comes: At the end of the Course, the Student will be able to						
CO#	COURSE OUT COME						
CO1	Understand Kannada Language.						
CO2	Communicate in Kannada Language						
CO3	Read simple Kannada words						
CO4	Pronounce Kannada words correctly						

Mapping of Course Outcomes to Program Outcomes															
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1		-	-	-	-	-	-	-	-	-	3	-	-	-	-
CO2			-	-	-	-	-	-	-	-	3	-	-	-	-
CO3		-	-	-	-	-	-	-	-	-	3	-	-	-	-
CO4			-	-	-	-	-	-	-	-	3	-	-	-	-
Correlation levels: 1-Slight(Low) 2-Moderate(Medium) 3-Substantial(High)															

Module No	Module Contents	Hours	Cos
1	Chapter – 1: Vyavaharika Kannada – Parichaya (Introducton to Vyavaharika Kannada)		
2	Chapter – 2: Kannada Aksharamalehaaguuchharane (Kannada Alphabets and Pronunciation		
3	Chapter – 3: SambhashanegaagiKanandaPadagalu (Kannada Vocabulary for Communication)		
4	Chapter – 4: Kannada in Conversations (Sambhashaneyalli Kannada)		
5	Chapter – 5: Activities in Kannada. (Kannada SambhashanegaagiChatuvatikegalu)		

Text Books:

1. Vyavaharika Kannada by Dr. L. Thimmesh, Prof. V. Keshavamurthy, published by: VTU, Belagavi CIE- Continuous Internal Evaluation (25 Marks)

Bloom's	CIE(25)	SEE(25)
Category		
Remember	12	12
Understand	13	13

ECONOMICS FOR ENGINEERS

 Course Code
 : 21HSS321A
 Credits: 2

 L: T: P
 : 2: 0: 0
 CIE Marks: 25

 Exam Hours:
 : 2
 SEE Marks: 25

Course Outco	nes: At the end of the Course, the Student will be able to					
CO#	COURSE OUTCOME					
20AIM421.1	Summarize the knowledge of economics and its importance in business decision making.					
20AIM421.2	Make use of economic concepts in business.					
20AIM421.3	Examine the impact of market forces on business.					
20AIM421.4	Interpret the role of market structure in the economic development of a country.					
20AIM421.5	Evaluate the role of budgeting in business decisions.					

Mapping of Course Outcomes to Program Outcomes														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
20AIM421.1	0	1	0	1	1	3	3	3	3	1	2	3		
20AIM421.2	1	1	1	1	2	2	1	2	2	2	3	3		
20AIM421.3	3	2	3	1	1	2	2	3	1	1	2	2		
20AIM421.4	1	2	1	2	1	3	1	2	2	2	2	2		
20AIM421.5	3	2	3	2	2	1	1	2	1	1	3	1		
Correlation levels: 1-Slight(Low) 2-Moderate(Medium) 3-Substantial(High)														

Module No	Module Contents	Hours	Cos
1	Introduction to Economics: Role of Engineer as an Economist, Types and problem of economies, Basics of		
	economics (GDP, National income, inflation, business cycle, fiscal and monetary policies, balance of payment).	4	CO1
2	Basic concepts of Microeconomics: concept of Demand & Elasticity of Demand. Concept of Supply & Elasticity		
	of Supply, Meaning of Production and factors of		
	production, Production Possibility Curve, Law of variable proportions and returns to scale. Relevance of		
	Depreciation towards industry, Depreciation computing methods.	4	CO2
3	Concepts of cost of production: different types of cost; accounting cost, sunk cost, marginal cost and		
	opportunity cost. Break even analysis, Make or Buy		
	decision. Cost estimation, Elements of cost as Direct	4	CO2
	Material Costs, Direct Labor Costs, Fixed Over-Heads, Factory cost, Administrative Over-Heads.	4	CO3
4	Market structure: Perfect Competition: Features,		
	Determination of Price under Perfect Competition -		
	Monopoly: Features, Pricing under Monopoly, Oligopoly: Features, Kinked Demand Curve, Cartel,	5	CO4

	Price Leadership – Monopolistic Competition: Features, Pricing under Monopolistic Competition, Product Differentiation.		
5	Capital budgeting: Traditional and modern methods, Payback period method, IRR, ARR, NPV, PI Interest and Interest factors: Interest rate, Simple interest, Compound interest, Cash - flow diagrams, Personal loans and EMI Payment. Present worth, Future worth.	7	CO5

Text Books:

- 1. Riggs J.L, Engineering Economy, TMH, 2012 edition
- ^{2.} Jain T.R., Economics for Engineers, VK Publications, 2008 Edition
- 3. IM PANDEY, Finacial Management, Vikas Pub. House, 2018 Edition
- 4. D N Dwivedi, Mangerial Economics ,Vikas Pub. House, 2018 Edition
- 5. Dr.A.R Sainath, Sasikala Devi, Engineering Economics and Financial accounting, Charulatha Publications, 2015 edition

Reference Books:

1. Thuesen H.G, Engineering Economy. PHI,1984

CIE- Continuous Internal Evaluation (25 Marks)

Bloom's Category	Tests (15 marks)	Assignments (10 marks)
Remember	5	-
Understand	5	-
Apply	5	-
Analyze	-	5
Evaluate	-	5
Create	-	-

SEE- Semester End Examination (50Marks)

Bloom's Category	Questions (50 marks)
Remember	-
Understand	20
Apply	30
Analyze	-
Evaluate	-
Create	-

DIGITAL ELECTRONICS FOR AI

 Course Code
 : 20AIM33A
 Credits: 3

 L: T: P
 : 3: 0: 0
 CIE Marks: 50

 Exam Hours:
 : 3
 SEE Marks: 50

Course Outco	es: At the end of the Course, the Student will be able to					
CO#	COURSE OUTCOME					
20AIM33A.1	Describe the significance and basic principles of the digital circuits					
20AIM33A.2	Apply the concepts of minimization techniques to realize digital circuits					
20AIM33A.3	Analyse different types of combinational and sequential circuits for given specifications					
20AIM33A.4	Design efficient combinational and sequential logic circuit from functional description of					
digital systems						
20AIM33A.5	1.5 Use CAD/HDL tools to simulate and verify Digital circuits					
20AIM33A.6	Construct and verify CAD/HDL tools to simulate and verify Digital circuits					

Mapping of C	Mapping of Course Outcomes to Program Outcomes													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
20AIM33A.1	-	-	-	-	-	-	-	-	-	-	-	-	3	-
20AIM33A.2	3	-	-	-	-	-	-	-	-	-	-	-	3	-
20AIM33A.3	-	3	-	-	-	-	-	-	-	-	-	-	3	-
20AIM33A.4	-	-	3	-	-	-	-	-	-	-	-	-	3	-
20AIM33A.5	-	-	-	-	3	-	-	-	-	-	-	3	3	-
20AIM33A.6														
Co	Correlation levels: 1-Slight(Low) 2-Moderate(Medium) 3-Substantial(High)													

Module No	Module Contents	Hours	COs
1	Simplification of Boolean Functions: Review of Boolean algebra, logic gates, canonical forms, Three Variable K – Maps, Four Variable K – Maps, Quine- McCluskey minimization technique, Reduced prime implicants Tables, Map Entered Variables.	9	CO1, CO2
2	Combinational Logic Circuits: Introduction, Adders, Subtractors, Carry Look Ahead Adder, Parallel Adder, Magnitude Comparator, Priority Encoders, Decoders, Multiplexers, Read Only memories (ROM), Programmable Logic Arrays (PLAs)	9	CO1, CO2, CO3, CO4
3	Sequential Logic Circuits: The Basic Flip-flop circuit, Clocked Flip-flops, Triggering of Flip-flops, types of Flip-flop, Master Slave Flip-Flops, Conversion of Flip-flops, types of Shift Registers, applications of shift register.	9	CO2, CO3, CO4
4	Analysis of Sequential Circuit: Binary ripple counters, synchronous binary counters, Design of a synchronous mod-n counter using clocked T, JK, D and SR flip-flops, Verilog implementation of counters, Mealy and Moore Models, State Reduction and Assignment, Design Procedure, Design with State Equations.	9	CO2, CO3, CO4
5	Introduction to HDL: Basic Concepts, data types,	9	CO1,

Compiler directives. Modules and Ports, Module	CO2,
definition, port declaration, connecting ports, Different	CO3,
types of modelling style, Verilog implementation of	CO4,
combinational circuits, Verilog implementation of	CO5,
sequential circuits, Verilog implementation Moore and	CO6
Mealy.	

Text Books:

- 1. Donald P Leach and Albert Paul Malvino , Digital Principles and Applications, , 8thEdition, Tata McGraw Hill, 2014
- 2. Anil K Maini, Varsha Agarwal ,Electronic Devices and Circuits, , 1st Edition, Wiley,2009

Reference Books:

1. Digital Design: with an Introduction to Verilog HDL, M Morris Mano and Michael DCiletti, 5th Edition, 2013, Pearson Education

CIE- Continuous Internal Evaluation (50 Marks)

Bloom's Category	Tests (25 marks)	Assignments (15 marks)	Quizzes (10 marks)
Remember	05	-	5
Understand	05	-	5
Apply	10	7.5	-
Analyze	10	7.5	-
Evaluate	-	-	
Create	-	-	-

SEE- Semester End Examination (50Marks)

Bloom's Category	Questions (50 marks)
Remember	05
Understand	10
Apply	20
Analyze	15
Evaluate	-
Create	-

DATA STRUCTURES USING C

 Course Code
 : 20AIM34A
 Credits: 3

 L: T: P
 : 3: 0: 0
 CIE Marks: 50

 Exam Hours:
 : 3
 SEE Marks: 50

Course Outco	mes: At the end of the Course, the Student will be able to
CO#	COURSE OUTCOME
20AIM34A.1	Understand the fundamentals of data structure and its applications.
20AIM34A.2	Apply dynamic memory allocation techniques for designing data structure
20AIM34A.3	Analyse the concepts of sorting, linear and non-linear data structure for problem solving.
20AIM34A.4	Investigate the literature about linear data structure and submit report in a team
20AIM34A.5	Prepare an effective written documentation about nonlinear data structures
20AIM34A.6	Demonstrate different tree data structures used for machine algorithms

Mapping of C	Mapping of Course Outcomes to Program Outcomes													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
20AIM34A.1	-	-	-	-	3	-	-	-	-	-	-	3	3	2
20AIM34A.2	3	-	-	-	3	-	-	-	-	-	-	3	3	2
20AIM34A.3	-	3	-	-	3	-	-	-	-	-	-	3	3	2
20AIM34A.4	1	ı	1	2	3	-	-	-	2	2	-	3	3	2
20AIM34A.5	1	ı	1	-	3	-	-	-	-	3	-	3	3	2
20AIM34A.6	3	-	-	-	3	-	-	-	-	-	-	3	3	2
Co	Correlation levels: 1-Slight(Low) 2-Moderate(Medium) 3-Substantial(High)													

Module No	Module Contents	Hours	Cos
1	Introduction to Data Structures: Arrays and Pointers revisited, Sparse matrix, transpose of a sparse matrix, dynamic memory management. Introduction to Data Structures, Classification of Data Structures, Abstract Data Types, Insertion sort, Quick sort, Shell sort, Radix sort.	9	CO1, CO2
2	Stacks & Queues: Stacks: Definition, Stack representation, Primitive operations on stack, array representation of stacks. Applications of stacks: Recursion, Fibonacci series, Tower of Hanoi problem, Conversion of expressions, Evaluation of postfix expression, Iteration v/s recursion. Queues: Definition, Queue representation, Primitive operations on queue, array representation of queues, Circular queue, Priority queue, Double ended queue, Applications of queues.	9	CO1, CO2, CO3 CO4
3	Linked Lists: Dynamic memory allocation revisited — malloc, calloc, realloc, free, Introduction to linked list, Representation of linked list in memory, primitive operations on linked list, searching a linked list, circular linked list, doubly linked list, header linked list. Applications of linked list: Josephus problem, addition of	9	CO1, CO3, CO4

	two long integers, addition of two polynomials, Linked representation of stack, Linked representation of queue.		
4	Trees-I: Introduction, Binary tree – strictly binary tree, complete binary tree, representing binary tree in memory, traversing a binary tree, binary Search tree, insertion and deletion in binary search tree, threaded binary tree. Expression trees, construction of an expression tree from prefix and postfix, Heap tree, creation of heap tree, insertion in heap, Deletion from heap.	9	CO1, CO3, CO5, CO6
5	Trees-II & Graphs: AVL Trees, Rotations in AVL tree, Insertion and deletion in an AVL tree, Huffman's algorithm. Introduction to Graph, Graph theory terminologies, sequential representation of a graph, adjacency matrix and path matrix, Warshall's algorithm, Linked representation of a graph, Operations on a graph, Traversing a graph, Topological sorting	9	CO1, CO3, CO5, CO6

Text Books:

- 1. Seymourlipschutz, Data Structures with C Special Indian Edition, Thirteenth reprint2015, McGrawHill Education
- 2. Aaron M. Tanenbaum, Yedidyah Langsam& Moshe J Augenstein, Data Structures using C, Thirteenth Impression 2014, Pearson Education

Reference Books:

1. Richard F Gilberg and Behrouz A Forouzan, Data Structures – A Pseudo code Approach with C, Second edition, Fifth Indian Reprint 2015, Cengage Learning

CIE- Continuous Internal Evaluation (50 Marks)

Bloom's Category	Tests (25 marks)	Assignments (15 marks)	Quizzes (10 marks)
Remember	-	-	-
Understand	5	-	5
Apply	5	7.5	5
Analyze	15	7.5	-
Evaluate	-	-	-
Create	-	<u> </u>	-

SEE- Semester End Examination (50Marks)

Bloom's Category	Questions (50 marks)
Remember	10
Understand	10
Apply	30
Analyze	-
Evaluate	-
Create	-

PYTHON PROGRAMMING

 Course Code
 : 20AIM35A
 Credits: 3

 L: T: P
 : 3: 0: 0
 CIE Marks: 50

 Exam Hours:
 : 3
 SEE Marks: 50

Course Outco	mes: At the end of the Course, the Student will be able to			
CO#	COURSE OUTCOME			
20AIM35A.1	Understand the fundamentals of data structure and its applications.			
20AIM35A.2	Apply dynamic memory allocation techniques for designing data structure			
20AIM35A.3	Analyse the concepts of sorting, linear and non-linear data structure for problem solving			
20AIM35A.4	Investigate the literature about linear data structure and submit report in a team			
20AIM35A.5	Prepare an effective written documentation about nonlinear data structures			
20AIM35A.6	Demonstrate different python packages used for Data science			

Mapping of Course Outcomes to Program Outcomes														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
20AIM35A.1	-	-	-	-	3	-	-	-	-	-	-	3	3	2
20AIM35A.2	3	-	-	-	3	-	-	-	-	-	-	3	3	2
20AIM35A.3	-	3	1	-	3	-	-	-	-	-	-	3	3	2
20AIM35A.4	-	-	1	2	3	-	-	-	2	2	-	3	3	2
20AIM35A.5	-	-	1	-	3	-	-	-	-	3	-	3	3	2
20AIM35A.6	3	-	-	-	3	-	-	-	-	-	-	3	3	2
Correlation levels: 1-Slight(Low) 2-Moderate(Medium) 3-Substantial(High)														

Module No	Module Contents	Hours	Cos
1	Introduction To Data, Expressions, Statements: Introduction to Python and installation, variables, expressions, statements, Numeric datatypes: Int, float, Boolean, string. Basic data types: list list operations, list slices, list methods, list loop, mutability, aliasing, cloning lists, list parameters. Tuple tuple assignment, tuple as return value, tuple methods. Sets: operations and methods. Dictionaries: operations and methods.	10	CO1, CO2
2	Control Flow Loops: Boolean values and operators, conditional (if), alternative (if-else), chained conditional (if-elif-else); Iteration: statements break, continue.	7	CO1, CO2
3	Advanced Functions, Arrays: FunctionsFunction and its use, pass keyword, flow of execution, parameters and arguments, Fruitful functions: return values, parameters, local and global scope, function composition, recursion Advanced Functions: lambda, map, filter, reduce, basic data type comprehensions. Python arrays: Create an array, Access the Elements of an Array, array methods.	10	CO2, CO3

4	Files, Exceptions: Reading files, Writing files in python, Understanding read functions, read(), readline(), readlines(). Understanding write functions, write() and writelines() Manipulating file pointer using seek Programming, using file operations. Exception handling	9	CO2, CO4
5	Python Packages: Python packages: Simple programs using the built-in functions of packages Matplotlib, numpy, pandas, Lamda etc. GUI Programming : Tkinter introduction, Tkinter and Python Programming, Tk Widgets, Tkinter examples. Python programming with IDE.	9	CO2, CO5 CO6

Text Books:

- 1. J. Jayalakshmi , D. Stalin Alex , B. Mahesh Prabhu,S. , Problem Solving and Python Programming , Chand publication,1 January 2018
- 2. Wesley J. Chun, Core Python Applications Programming, 3rd Edition , Pearson Education, 2016
- 3. Carles Dierbach, Introduction to Computer Science using Python, Wiley, 2015

Reference Books:

1. Jeeva Jose & P.SojanLal, "Introduction to Computing and Problem Solving with PYTHON", Khanna Publishers, New Delhi, 2016

CIE- Continuous Internal Evaluation (50 Marks)

Bloom's Category	Tests (25 marks)	Assignments (15 marks)	Quizzes (10 marks)
Remember	-	-	5
Understand	10	-	5
Apply	15	7.5	-
Analyze	-	7.5	-
Evaluate	-	-	-
Create	-	-	-

SEE- Semester End Examination (50Marks)

Bloom's Category	Questions (50 marks)
Remember	10
Understand	10
Apply	30
Analyze	-
Evaluate	-
Create	-

DIGITAL ELECTRONICS LAB

 Course Code
 : 20AIL36A
 Credits: 2

 L: T: P
 : 0: 0: 2
 CIE Marks: 25

 Exam Hours:
 : 3
 SEE Marks: 25

Course Outco	nes: At the end of the Course, the Student will be able to					
CO#	COURSE OUTCOME					
20AIL36A.1	Apply the concepts of minimization techniques to realize the digital circuits					
20AIL36A.2	Analyse different methods to realize the logic circuits					
20AIL36A.3	Simulate logic circuits using HDL tool					
20AIL36A.4	Demonstrate the specific application of digital electronics using suitable digital ICs/					
20AIL30A.4	Multisim/Xlinx/ FPGA board/- etc					

Mapping of (Mapping of Course Outcomes to Program Outcomes													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
20AIL36A.1	3	-	-	-	-	-	-	-	-	-	-	-	3	2
20AIL36A.2	-	3	-	-	-	-	-	-	-	-	-	-	3	2
20AIL36A.3	-	-	3	-	-	-	-	-	-	-	-	-	3	2
20AIL36A.4	-	-	-	-	3	-	-	-	-	-	-	-	3	2
C	Correlation levels: 1-Slight(Low) 2-Moderate(Medium) 3-Substantial(High)													

Ex. No	Experiments	Hours	COs
1.	Verify (a) Demorgan's Theorem for 2 variables. (b) The sum-of product and product-of-sum expressions using universal gates.	4	CO1, CO2, CO4
2.	Design and implement (a) Full Adder using basic logic gates. (b) Full Subtractor using basic logic gates.	4	CO1, CO2, CO4
3.	Realize the different shift registers using IC7474	4	CO2, CO4
4.	Given a 4-variable logic expression, simplify it using Entered Variable Map and realize the simplified logic expression using 8:1 multiplexer IC. Simulate and verify its working using Verilog code	4	CO2, CO4
5.	Perform n bit addition / subtraction using 4-bit full adder IC. Simulate and verify its working using Verilog code.	4	CO2, CO4
6.	Design and implement BCD to seven-segment decoder. Simulate and verify given decoder using VERILOG code.	4	CO3, CO4
7.	Design and implement Ring counter and Johnson counter using 4 bit shift register and demonstrate its working.		

	Simulate and verify the working using VERILOG code.		
9.	Design and implement a mod-n (n<8) synchronous up or down counter using J-K Flip-Flop ICs and demonstrate its working. Simulate and verify mod 8 synchronous up or down counter using VERILOG code. Design and implement an asynchronous counter using decade counter IC to count from 0 to n (n<=9) and demonstrate its working.	4	CO3, CO4
10.	Design and implement a sequence generator (3 bits) using Moore model and JK flip flop. Simulate and verify the working using VERILOG code.	2	CO3, CO4

- 1. Stephen Brown and Zvonko Vranesic ,Fundamentals of Digital Logic with Verilog Design , Tata McGraw Hill , 2017
- 2. M Morris Mano and Michael D, Ciletti , Digital Design: with an Introduction to Verilog HDL, 5th Edition, Pearson Education , 2013

CIE- Continuous Internal Evaluation (25 Marks)

Bloom's Category	Tests (25 marks)
Remember	-
Understand	5
Apply	5
Analyze	10
Evaluate	5
Create	-

Bloom's Category	Questions (50 marks)
Remember	-
Understand	5
Apply	5
Analyze	10
Evaluate	5
Create	-

DATA STRUCTURES PROGRAMMING LAB USING C

 Course Code
 : 20AIL37A
 Credits: 3

 L: T: P
 : 0: 0: 2
 CIE Marks: 25

 Exam Hours:
 : 3
 SEE Marks: 25

Course Outco	omes:	At the end of the Course, the Student will be able to					
CO#	COUR	COURSE OUTCOME					
20AIL37A.1	Apply Data structure techniques to solve the problem						
20AIL37A.2	Analyse the output for a given problem						
20AIL37A.3	Conduct experiments as individual by using C programming language						
20AIL37A.4	Prepare	Prepare an effective report based on experiments					

Mapping of (Mapping of Course Outcomes to Program Outcomes													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
20AIL37A.1	3	-	-	-	-	-	-	-	-	-	-	3	3	2
20AIL37A.2	-	3	-	-	-	-	-	-	-	-	-	3	3	2
20AIL37A.3	-	-	-	-	3	-	-	-	-	-	-	3	3	2
20AIL37A.4	-	-	-	-	-	-	-	-	-	3	-	3	3	2
C	Correlation levels: 1-Slight(Low) 2-Moderate(Medium) 3-Substantial(High)													

Ex. No	Experiments	Hours	Cos
1.	Write a C program to sort numbers a. Insertion sort b. Shell sort c. Quick sort	4	CO1, CO2, CO3, CO4
2.	Develop a program for STACK that performs following primitive operations: push, pop and display	4	CO1, CO2, CO3, CO4
3.	Develop a program a. To convert INFIX notation to POSTFIX b. Evaluation of POSTFIX notation	4	CO1, CO2, CO3, CO4
4.	Develop a program for QUEUE that performs following primitive operations: insert, delete and display	4	CO1, CO2, CO3, CO4
5.	Develop a program for CIRCULAR QUEUE that performs following primitive operations: insert, delete and display	4	CO1, CO2, CO3, CO4
6.	Write a menu driven program to perform the following primitive operations on single linked list Create a list with one node a. Insertion at front, rear ,after any given node b. Deletion at front,, rear ,after any given node c. Display	4	CO1, CO2, CO3, CO4
7.	Write a Menu driven program to perform the following primitive operations in double linked list a. Insertion		

	b. Deletion c. Display		
8.	Develop a program to traverse a tree using in-order, pre-order and post order.	4	CO1, CO2,
9.	Develop a program to perform insertion, deletion and traversal of a binary search tree		CO3, CO4
10.	Develop a program to implement BFS and DFS traversal of graph	2	CO1, CO2, CO3, CO4

- 1. Seymourlipschutz, Data Structures with C Special Indian Edition, Thirteenth reprint2015, McGrawHill Education
- 2. Aaron M. Tanenbaum, Yedidyah Langsam& Moshe J Augenstein, Data Structures using C, Thirteenth Impression 2014, Pearson Education

CIE- Continuous Internal Evaluation (25 Marks)

Bloom's Category	Tests (25 marks)
Remember	-
Understand	5
Apply	15
Analyze	5
Evaluate	-
Create	-

Bloom's Category	Questions (50 marks)
Remember	-
Understand	5
Apply	15
Analyze	5
Evaluate	-
Create	-

PYTHON PROGRAMMING LAB

 Course Code
 : 20AIL38A
 Credits: 2

 L: T: P
 : 0: 0: 2
 CIE Marks: 25

 Exam Hours:
 : 3
 SEE Marks: 25

Course Outcomes:		At the end of the Course, the Student will be able to					
CO#	COUR	COURSE OUTCOME					
20AIL38A.1	Apply	Apply python programming concepts to solve the problem					
20AIL38A.2	Analys	Analyse the output for a given problem					
20AIL38A.3	Solve e	Solve experiments using python programming language individually					
20AIL38A.4	Prepare	an effective report based on experiments					

Mapping of (Mapping of Course Outcomes to Program Outcomes													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
20AIL38A.1	3	-	-	-	-	-	-	-	-	-	-	3	3	2
20AIL38A.2	-	3	-	-	-	-	-	-	-	-	-	3	3	2
20AIL38A.3	-	-	-	-	3	-	-	-	-	-	-	3	3	2
20AIL38A.4	-	-	-	-	-	-	-	-	-	3	-	3	3	2
C	Correlation levels: 1-Slight(Low) 2-Moderate(Medium) 3-Substantial(High)													

E.No	List of Programs	Hours	COs
	A) Create a list and perform the following methods 1) insert() 2) remove() 3) append() 4) len() 5) pop() 6) clear()		
1	B) Create a dictionary and apply the following methods 1) Print the dictionary items 2) access items 3) use get() 4)change values 5) use len()	4	CO1, CO2, CO3,
	C) Create a tuple and perform the following methods 1) Add items 2) len() 3) check for item in tuple 4)Access items		CO4
	A) Write a python program to add two numbers.		
	B) Write a python program to print a number is positive/negative using ifelse.		CO1, CO2, CO3,
2	C) Write a python program to find largest number among three numbers.		CO4
	D) Write a python Program to read a number and display corresponding day using if_elif_else?	4	
	A) Write a program to create a menu with the following options		
	1. To perform addition 2. To perform subtraction		
	3. To perform multiplication 4. To perform division Accepts users input and perform the operation accordingly. Use functions with arguments.	4	CO1
	B) Write a python program to check whether the given string is palindrome		CO1, CO2,
3	or not.		CO3,
3	C) Write a python program to find factorial of a given number using functions		CO4

	D) Waite a Dark and formation of the first transfer of the first t		
	D) Write a Python function that takes two lists and returns True if they are equal otherwise false		
	A) Write a program to double a given number and add two numbers using lambda()?		
4	C) Write a program for map() function to double all the items in the list?	•	CO1, CO2, CO3,
	D) Write a program to find sum of the numbers for the elements of the list by using reduce ()?	4	CO4
	A) Demonstrate a python code to implement abnormal termination?		
5	B) Demonstrate a python code to print try, except and finally block statements		
	C) Write a python program to open and write "hello world" into a file?	4	CO1
	D) Write a python program to write the content "hi python programming" for the existing file.	•	CO3 CO4
	A) Write a python program to get python version.		
	B) Write a python program to open a file and check what are the access permissions acquired by that file using module?		
6	C) Write a python program to display a particular month of a year using calendar module.		CO1
	D) Write a python program to print all the months of given year.	4	CO2
	A) Write a python program to print date, time for today and now.	-	CO3 CO4
	B) Write a python program to add some days to your present date and print the date added.		CO4
	C) Write a python program to print date, time using date and time functions		
7	D) Write a python program, which accepts the radius of a circle from user and computes the area (use math module).		
	A) Using a numpy module create an array and check the following:1. Type of array 2. Axes of array3. Shape of array 4. Type of elements in array		
	B) Using a numpy module create array and check the following: 1. List with type float 2. 3*4 array with all zeros 3. From tuple 4. Random values		
8	C) Using a numpy module create array and check the following: 1. Reshape 3X4 array to 2X2X3 array 2. Sequence of integers from 0 to 30 with steps of 5 3. Flatten array	4	CO1 CO2 CO3 CO4
9	A) Write a python program to create a package (college),sub-package (alldept),modules(it,cse) and create admin and cabin function to module?		
	B) Write a python program to create a package (Engg),sub-package (years),modules (sem) and create staff and student function to module?		
10	Program to develop calculator using tKinter	2	CO1 CO2 CO3

- 1. J. Jayalakshmi , D. Stalin Alex , B. Mahesh Prabhu, S. , Problem Solving and Python Programming, Chand publication,1 January 2018

 2. Wesley J. Chun, Core Python Applications Programming, 3rd Edition, Pearson
- Education, 2016

CIE- Continuous Internal Evaluation (25 Marks)

Bloom's Category	Tests (25 marks)
Remember	-
Understand	5
Apply	15
Analyze	5
Evaluate	-
Create	-

Bloom's Category	Questions (25 marks)
Remember	-
Understand	5
Apply	15
Analyze	5
Evaluate	-
Create	-

MINI PROJECT - I

 Course Code
 : 20AIL39A
 Credits: 2

 L: T: P
 : 0: 0: 2
 CIE Marks: 25

 Exam Hours:
 : 3
 SEE Marks: 25

Course Outco	nes: At the end of the Course, the Student will be able to						
CO#	COURSE OUTCOME						
20AIL39A.1	Illustrate the technological needs and/ or societal needs and sustainability of the						
environment							
20AIL39A.2	Design application using high level programming language						
20AIL39A.3	Analyse and evaluate the outcome of the project						
20AIL39A.4	Test, validate and communicate the identified solutions in a structured way.						

Mapping of (Mapping of Course Outcomes to Program Outcomes													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
20AIL39A.1	-	-	-	-	-	3	2	3	-	-	-	3	3	2
20AIL39A.2	-	-	3	-	3	-	-	-	-	-	-	3	3	2
20AIL39A.3	-	3	-	-	-	-	-	-	-	-	-	3	3	2
20AIL39A.4	-	-	-	3	-	-	-	-	3	3	3	3	3	2
C	Correlation levels: 1-Slight(Low) 2-Moderate(Medium) 3-Substantial(High)													

Each team capable of identifying a problem and carry out a mini project on the problem defined. A panel of experts will review the code developed towards the project during the course of the semester. Plagiarized projects will automatically get an "F" GRADE and the student will be liable for further disciplinary action. At the completion of a project, the team will submit a project report, which will be evaluate by duly appointed examiner(s).

Sample Mini project includes:

- 1) Tic-Tac-Toe Game
- 2) Quiz Game
- 3) Library Management
- 4) Telecom Billing Management system
- 5) ERP application etc.,

CIE- Continuous Internal Evaluation (25 Marks)

Bloom's Category	Review (25marks)
Remember	-
Understand	-
Apply	10
Analyze	10
Evaluate	5
Create	-

Bloom's Category	Review (25marks)
Remember	-
Understand	-
Apply	10
Analyze	10
Evaluate	5
Create	-

MATHEMATICAL STATISTICS

 Course Code
 : 20AIM41A
 Credits: 3

 L: T: P
 : 2: 1: 0
 CIE Marks: 50

 Exam Hours:
 : 3
 SEE Marks: 50

Course Outco	mes: At the end of the Course, the Student will be able to						
CO#	COURSE OUTCOME						
20AIM41A.1	Calculate and interpret the various measures of Dispersion, Skewness and						
20AIWI41A.1	Kurtosis.						
20AIM41A.2	Solve the problems related to Combinatorics and Probability						
20AIM41A.3	Gain ability to use probability distributions to analyse and solve real time						
20AIIVI41A.3	problems						
20AIM41A.4	Apply the stochastic process and Markov chain in prediction of future events						
20AIM41A.5	Apply the concept of sampling distribution to solve engineering problems						
20AIM41A.6	Use the concepts to analyse the data to make decision about the hypothesis						

Mapping of C	Mapping of Course Outcomes to Program Outcomes																							
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2										
20AIM41A.1	3	3	3	2	2	-	-	-	1	1	-	1	-	-										
20AIM41A.2	3	3	3	2	2	-	-	-	1	1	-	1	-	-										
20AIM41A.3	3	3	3	2	2	-	-	-	1	1	-	1	-	-										
20AIM41A.4	3	3	3	2	2	-	-	-	1	1	-	1	-	-										
20AIM41A.5	3	3	3	2	2	-	-	-	1	1	-	1	-	-										
20AIM41A.6	3	3	3	2	2	-	-	-	1	1	-	1	-	-										
Co	orrelat	ion le	vels:	l-Sligl	nt(Lov	v) 2-	Moder	ate(M	edium) 3-Su	bstantia	al(High	Correlation levels: 1-Slight(Low) 2-Moderate(Medium) 3-Substantial(High)											

Module No	Module Contents	Hours	COs
1	Measures of Dispersion, Skewness and Kurtosis: Dispersion, Measures of dispersion, Percentile, Range, Quartile deviation, Mean deviation, Coefficient of dispersion, Coefficient of variation, Moments, Skewness, Kurtosis.	9	CO1
2	Combinatorics and Probability: Random variable Permutations and Combinations, Probability, Axioms of probability, Events, Addition rule, Conditional probability Multiplication rule, Bayes theorem.	9	CO2
3	Probability Distributions: Random variables (discrete and continuous), probability density functions. Discrete Probability distributions: Binomial and Poisson Distributions-Problems. Continuous Probability distributions: Exponential and Normal Distributions-Problems.	9	CO3

4	Joint Probability Distributions and Stochastic process: Concept of joint probability-Joint probability distribution, Discrete and Independent random variables. Expectation, Covariance, Correlation coefficient. Probability vectors, Stochastic matrices, Fixed points, Regular stochastic matrices. Markov chains, Higher transition probabilities. Stationary distribution of regular Markov chains and absorbing states.	9	CO4
5	Sampling Theory: Sampling, Sampling distributions, test of hypothesis of large samples for means and proportions, Central limit theorem (without proof), confidence limits for means, Student's t-distribution, F-distribution and Chisquare distribution for test of goodness of fit for small samples.	9	CO5, CO6

- 1. S. C. Gupta and V. K. Kapoor, Fundamentals of Mathematical Statistics, Sultan Chand and Sons, Tenth Revised Edition, 2002, ISBN: 81-7014-791-3.
- 2. Ronald E. Walpole, Raymond H. Myers, Sharon L. Myers and Keying Ye, Probability and Statistics for Engineers & Scientists, Prentice Hall, Ninth Edition, 2012, ISBN: 978-0-321-62911-1.

Reference Books:

- 1. Murray R. Spiegel, John J. Schiller and R. Alu Srinivasan, Probability and Statistics, Schaum's Outline Series, McGraw-Hill company, Fourth Edition, 2013, ISBN: 978-0-07-179557-9
- ^{2.} T. Veerarajan, Probability, Statistics and Random Processes, Tata McGaw-Hill Publishing Company, Limited, Third Edition, 2008, ISBN: 978-0-07-066925-3
- 3. Athanasios Papoulis and Unni Krishna Pillai, Probability, Random Variables and Stochastic Processes, Tata McGaw-Hill Publishing Company Limited, Fourth Edition, 2002, ISBN: 0-07-112256-7
- Sheldon M. Ross, Stochastic Processes, John Wiley & Sons. Inc., Second Edition, 1996, ISBN: 0-471-12062-6

CIE- Continuous Internal Evaluation (50 Marks)

Bloom's Category	Tests	Assignment-1	Assignment-2	Quiz-1	Quiz-2	
	(25 Marks)	(7.5 Marks)	(7.5 Marks)	(05 Marks)	(05 Marks)	
Remember	5	2.5	2.5	-	-	
Understand	5	2.5	2.5	-	-	
Apply	10	2.5	2.5	05	05	
Analyze	2.5	-	-	-	-	
Evaluate	2.5	-	-	-	-	
Create	-	-	-	-	-	

Bloom's Category	Questions (50 marks)
Remember	10
Understand	10
Apply	20
Analyze	5
Evaluate	5
Create	-

LIFE SKILLS FOR ENGINEERS

 Course Code
 : 20HSS422A
 Credits: 2

 L: T: P
 : 3: 0: 0
 CIE Marks: 50

 Exam Hours:
 : SEE Marks: 50

Course Outco	nes: At the end of the Course, the Student will be able to					
CO#	COURSE OUTCOME					
20AIM422.1	Set personal and professional goals					
20AIM422.2	Develop critical and creative thinking skills and practise leadership.					
20AIM422.3	Demonstrate and understand personal and professional responsibility					
20AIM422.4	Apply the concepts of personality development and grooming in corporate life					
20AIM422.5	Understand self and work with groups					
20AIM422.6	Articulate and convey ideas and thoughts with clarity and focus					

Mapping of Course Outcomes to Program Outcomes														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
20AIM422.1	-	-	-	-	-	-	-	-	3	-	3	3	-	-
20AIM422.2	-	-	-	-	-	2	-	2	3	-	2	3	-	-
20AIM422.3	-	-	-	-	-	2	2	3	3	-	-	3	-	-
20AIM422.4	-	-	-	-	-	-	-	-	3	3	-	3	-	-
20AIM422.5	-	-	-	-	-	-	-	-	3	-	3	3	-	-
20AIM422.5	-	-	-	-	-	2	2	-	3	3	2	3	-	-
C	Correlation levels: 1-Slight(Low) 2-Moderate(Medium) 3-Substantial(High)													

Module No	Module Contents	Hours	Cos
1	Goal Setting: Importance of Goals: Achiever's goal - Creating SMART for personal and professional life, Right action at right time, career planning, overcoming fear and face uncertainty, Mind Mapping. Communication – Intellectual preparation/Idea generation.	6	CO1 CO6
2	You are the creator - Taking Ownership, Being Responsible and Accountable. Meaning of Ownership, Responsibility and Accountability, Practicing these philosophies in course, career. Social responsibility. Communication – Organising thought flow.	6	CO3
3	Self-Awareness and Self-Management: Emotional Intelligence, Know yourself- understanding personality, perception, techniques to understand self – Johari window and SWOT, reason for fall and opportunities to grow. Individual behaviour, attitude towards change and work, being proactive and positive. Interpersonal skills - Knowing others, working well with others. Communication – Structured articulation	9	CO5 CO6
4	Leadership, meaning, self - motivation, coming out of comfort zone, mental preparation - accepting failure and	9	CO2, CO6

	resilience, decision making, thinking skills – critical and creative, six thinking hats, watchfulness - proactive risk management, problem solving mind set. Communication – Tips for Jam session, GD and Presentation		
5	Personality Development and Grooming: - Expectations from the industry, building personal presence, corporate grooming, corporate etiquettes, Personal branding and image management. Communication – Mock GD sessions	6	CO4 CO6

Reference Books:

- 1. The 7 Habits of Highly Effective People, Stephen R Covey, Neha Publishers
- 2. Seven Habits of Highly Effective Teens, Convey Sean, New York, Fireside Publishers, 1998.
- 3. Emotional Intelligence, Daniel Coleman, Bantam Book, 2006.
- 4. How to win friends and influence people Dale Carnegie
- 5. The Bhagavad-Gita for college students Sandeepa Guntreddy

CIE- Continuous Internal Evaluation (50 Marks)

Bloom's				Peer
Category	Tests	Assignments	Self-Study	Evaluation
Marks (out of 50)	10	15	15	10
Remember	1	-	-	-
Understand	-	-	-	-
Apply	5	5	-	5
Analyse	-	-	5	-
Evaluate	-	-	-	
Create	5	10	10	5

Bloom's Category	Questions (50 marks)
Remember	5
Understand	10
Apply	10
Analyze	10
Evaluate	5
Create	10

ENVIRONMENTAL SCIENCE AND AWARENESS

 Course Code
 : 20HSS423A
 Credits: 0

 L: T: P
 : 0: 0: 0
 CIE Marks: 25

 Exam Hours:
 : 2
 SEE Marks: 25

Course Outcom	es: At the end of the Course, the Student will be able to
CO#	COURSE OUTCOME
20HSS323A.1	Explain the concepts of environment, ecosystem and biodiversity.
20HSS323A.2	Analyze the use of natural resources for sustainability.
20HSS323A.3	Understand the control measures of Environmental pollution, the role of
	Government and NGO in solving Socio-Environmental issues.
20HSS323A.4	Apply the Environmental ethics, acts and amendments in protecting
	Environment and human health.

Mapping of Course Outcomes to Program Outcomes														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
19HSS323.1	-	-	-	ı	-	3	3	-	-	1	-	-	-	-
19HSS323.2	-	-	-	-	-	3	3	-	-	•	-	3	3	-
19HSS323.3	-	ı	•	ı	-	3	3	3	-	3	-	3	3	-
19HSS323.4	-	-	-	-	-	3	3	3	-	3	-	3	3	-
C	Correlation levels: 1-Slight(Low) 2-Moderate(Medium) 3-Substantial(High)													

Module No	Module Contents	Hours	Cos
1	Introduction to Environment, Ecosystem and biodiversity: Environment - Components of Environment, Scope and importance of Environmental studies, Ecosystem: Types & Structure of Ecosystem, Energy flow in the ecosystem, Food chains – food webs & ecological pyramids. Biodiversity – Definition, Hot-spots of biodiversity, Threats to biodiversity, Conservation of biodiversity.	05	CO1
2	Natural Resources: Renewable and non-renewable resources – Natural resources and associated problems. Role of an individual in conservation of natural resources. Water conservation, rain water harvesting. Balanced use of resources for sustainable lifestyle – strategies.	04	CO2
3	Environmental Pollution: Definition, Causes, effects and control measures of Air Pollution, Water Pollution, Soil Pollution, Marine Pollution, Noise pollution, Thermal Pollution and Nuclear hazards. Role of an individual in	04	СОЗ

	prevention of pollution - Waste management – urban and industrial wastes.		
4	Social Issues and Environment: Environmental ethics – issues and possible solutions. Environment protection act – Air (prevention and Control of pollution) act & Water (prevention and Control of pollution) act. Role of government: Swatch Bharat Abhiyan, National Mission for Clean Ganga (NMCG), River rejuvenation, Role of Nongovernmental Organizations (NGOs), Global warming and climate change.	04	CO3 CO4
5	Human Population and Environment: Population growth & explosion, Family welfare programme. Environment and human health, Human rights, Value education. Role of Technology in protecting environment and human health.	05	CO4

- 1. "Environmental Studies: Basic Concepts" by Ahluwalia, V. K The Energy and Resources Institute (TERI) Publication, 2nd edition, 2016, ISBN: 817993571X, 9788179935712.
- 2. "Textbook of Environmental Studies for Undergraduate Courses of all branches of Higher Education" by Bharucha, Erach for UGC, New Delhi, 2004. ISBN: 8173715408, 9788173715402.

Reference Books:

- 1. Digital Design: with an Introduction to Verilog HDL, M Morris Mano and Michael DCiletti, 5th Edition, 2013, Pearson Education
- 2. Handbook of Environmental Engineering by Rao Surampalli, Tian C. Zhang, Satinder Kaur Brar, Krishnamoorthy Hegde, Rama Pulicharla, MausamVerma; McGraw Hill Professional, 2018. ISBN: 125986023X, 9781259860232
- 3. Environmental Science and Engineering by P. Venugopala, Prentice Hall of India Pvt. Ltd, New Delhi, 2012 Edition. ISBN: 978-81-203-2893-8.
- 4. Environmental Science- Working with the earth by G Taylor Miller Jr, Brooks Cole Thompson Publications, 10 thEdition ,ISBN: 10: 0534424082

CIE- Continuous Internal Evaluation (25 Marks)

Bloom's Category	Tests (15 marks)	Assignments (5 marks)	Quizzes (5 marks)
Remember	2	0	0
Understand	5	0	2
Apply	4	2	3
Analyze	4	3	0
Evaluate	0	0	0
Create	0	0	0

Bloom's Category	Questions (25 marks)
Remember	5
Understand	10
Apply	5
Analyze	5
Evaluate	0
Create	0

INTRODUCTION TO DATA SCIENCE

 Course Code
 : 20AIM43A
 Credits: 3

 L: T: P
 : 3: 0: 0
 CIE Marks: 50

 Exam Hours:
 : 3
 SEE Marks: 50

Course Outco	mes: At the end of the Course, the Student will be able to
CO#	COURSE OUTCOME
20AIM43A.1	Explore predictive modeling techniques with necessary python packages
20AIM43A.2	Apply predictive modeling and descriptive statistics concepts for data preparation
20AIM43A.3	Examine and use appropriate methods for data wrangling
20AIM43A.4	Inspect and submit efficient solution for the given data source as a team.
20AIM43A.5	Prepare an effective written documentation about significance of feature selection
20AIM43A.6	Demonstrate Big data tools used for analytics

Mapping of C	Mapping of Course Outcomes to Program Outcomes													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
20AIM43A.1	-	-	-	-	3	-	-	-	-	-	-	3	3	-
20AIM43A.2	3	-	-	-	3	-	-	-	-	1	1	3	3	-
20AIM43A.3	-	3	1	-	3	-	-	-	-	1	1	3	3	-
20AIM43A.4	-	1	1	3	3	-	-	-	2	2	1	3	3	-
20AIM43A.5	-	1	1	-	3	-	-	-	-	1	1	3	3	-
20AIM43A.6	3	-	-	-	3	-	-	-	-	-	-	3	3	-
Co	Correlation levels: 1-Slight(Low) 2-Moderate(Medium) 3-Substantial(High)													

Module No	Module Contents	Hours	COs
1	Basic Concepts: Predictive Modeling, Data preparation, Importance of Data preparation, Data Cleaning, Feature selection, Data Transform, Feature selection, Dimensionality reduction, K-fold cross validation, Data Leakage and avoidance measure Python Packages: Numpy, Matplotlib, pandas, scipy, scikit, Data frame, Loading Machine Learning data	9	CO1, CO2
2	Descriptive Statistics: Mean Standard Deviation, Skewness and Kurtosis – Box Plots – Pivot Table – Heat Map Correlation Statistics – ANOV. Data Preparation: Need for Data Pre-processing, Data Transforms, and Rescale Data Standardize Data, Normalize Data, Binarize Data, Univariate Selection, Recursive Feature Elimination, Principal Component Analysis.	9	CO1, CO2, CO4, CO6
3	Data Cleaning: Basic data cleaning, Outlier Identification and Removal, How to Mark and Remove Missing Data, Statistical Imputation, KNN Imputation, Iterative Imputation. Feature Selection: Statistics for feature selection, Methods for categorical input, Methods for Numerical input, Select Features for Numerical Output, RFE for Feature Selection, Significance of feature	9	CO1, CO3, CO4

	selection		
4	Data Transforms: Scaling data source, min-max scalar and standard scaler, Scale data with outliers, Encode categorical data, Make Distributions More Gaussian, Approach for Numerical Data Distributions, Deriving new input variables. Dimensionality reduction: Techniques for Dimensionality Reduction, Linear Discriminant Analysis, PCA Dimensionality Reduction, SVD Dimensionality Reduction	9	CO1, CO3, CO4, CO6
5	Other Transforms: Transform numerical to categorical, Transform Numerical and Categorical Data, Transform the Target in Regression, Save and load the transformation, case studies for Binary classification, Multi classification and regression	9	CO1, CO4, CO5, CO6

- 1. Data Preparation for Machine Learning by Jason Brownlee, 2020
- 2. Master Machine Learning Algorithms Discover How They Work and Implement Them From Scratch by Jason Brownlee, 2016.

Reference Books:

 Data Mining Concepts and Techniques, Han, Kamber, 3rd Edition, Morgan Kaufmann Publishers, 2016

CIE- Continuous Internal Evaluation (50 Marks)

Bloom's Category	Tests (25 marks)	Assignments (15 marks)	Quizzes (10 marks)		
Remember	5	-	5		
Understand	5	-	5		
Apply	10	7.5	-		
Analyze	5	7.5	-		
Evaluate	-	-	-		
Create	-	-	-		

Bloom's Category	Questions (50 marks)
Remember	10
Understand	10
Apply	20
Analyze	10
Evaluate	-
Create	-

OBJECT ORIENTED PROGRAMMING USING JAVA

 Course Code
 : 20AIM44A
 Credits: 3

 L: T: P
 : 3: 0: 0
 CIE Marks: 50

 Exam Hours:
 : 3
 SEE Marks: 50

Course Outco	mes: At the end of the Course, the Student will be able to					
CO#	COURSE OUTCOME					
20AIM44A.1	Describe the object oriented concepts of Java					
20AIM44A.2	Apply OOP's concept to implement a given problem using Java.					
20AIM44A.3	Analyze the flow of a program is correct according to OOP's principles					
20AIM44A.4	Investigate the concept of Multithreading in concurrent programming available in					
ZUAIIVI44A.4	literature and submit report in a team					
20AIM44A.5	Prepare an effective written documentation about significance of various packages					
20AIM44A.6	Demonstrate the web based applications development using java.					

Mapping of C	Mapping of Course Outcomes to Program Outcomes													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
20AIM44A.1	-	-	-	-	3	-	-	-	-	-	-	3	3	2
20AIM44A.2	3	-	-	-	3	-	-	-	-	-	-	3	3	2
20AIM44A.3	-	3	-	-	3	-	-	-	-	-	-	3	3	2
20AIM44A.4	-	-	3	1	3	-	-	-	2	2	1	3	3	2
20AIM44A.5	-	-	3	1	3	-	-	-	-	2	1	3	3	2
20AIM44A.6	3	-	-	-	3	-	-	-	-	-	-	3	3	2
Co	Correlation levels: 1-Slight(Low) 2-Moderate(Medium) 3-Substantial(High)													

Module No	Module Contents	Hours	COs
1	Introduction to Java: Basics of Java programming - Dissecting the "Hello, World" Program, Compiling and Running a Java Program, Data types, Variables, Operators, Control structures including selection, Looping, Java methods, Math class, Arrays in java	9	CO1 CO2
2	Objects and Classes: Working with Objects, Implementing Classes, Object Construction, Static Variables and Methods, Constructors, Overloading Visibility modifiers, Methods and objects, Inbuilt classes like String, Character, String Buffer, this reference, nested classes.	9	CO1, CO2, CO6
3	Inheritance and Polymorphism: Inheritance and types, Super and sub class, Overriding, Polymorphism, Dynamic binding, Casting objects, Instance of operator, Abstract class, Interface, Package, Object class	9	CO1, CO2, CO6
4	Exception Handling: Exception Types, Uncaught Exceptions, using try and catch, Multi catch clauses, Nested try statements, throw, throws, finally, Java's Built-in Exceptions. Threads: The java Thread Model, The main Thread,	9	CO1, CO2, CO3, CO4, CO6

	Creating a Thread, Creating multiple Threads, Thread Priorities, Synchronization, Inter thread Communication, Suspending, resuming and Stopping Threads, using Multithreading.		
5	I/O basics: Reading input, writing output, Reading and Writing files The Collections Framework: Collections Overview, The Collection Interfaces- The List Interface, The Set Interface, The Queue Interface, The Collection Classes – Array List Class, Linked List Class, Tree set Class	9	CO1, CO2, CO5, CO6

- 1. Herbert Schildt, JavaTM: The Complete Reference, McGraw-Hill, Tenth Edition, 2018
- 2. Cay S.Horstmann, Core Java®SE9fortheImpatient, Addison Wesley, Second Edition, 2018

Reference Books:

- 1. Cay S. Horstmann, Core JavaTM Volume I—Fundamentals, Prentice Hall, Tenth Edition, 2015
- 2. Rogers Cedenhead and Leura, Lemay SAMS teach yourself Java– 2, 3rd Edition by Pub. Pearson Education, 2004
- 3. Ken Kousen, Modern Java Recipes, O'Reilly Media, Inc.,2017

CIE- Continuous Internal Evaluation (50 Marks)

Bloom's Category	Tests (25 marks)	Assignments (15 marks)	Quizzes (10 marks)
Remember	-	-	5
Understand	10	-	5
Apply	10	7.5	-
Analyze	5	7.5	-
Evaluate	-	-	-
Create	-	-	-

Bloom's Category	Questions (50 marks)
Remember	-
Understand	10
Apply	30
Analyze	10
Evaluate	-
Create	-

DATABASE MANAGAEMENT SYSTEM

 Course Code
 : 20AIM45A
 Credits: 3

 L: T: P
 : 3: 0: 0
 CIE Marks: 50

 Exam Hours:
 : 3
 SEE Marks: 50

Course Outco	mes: At the end of the Course, the Student will be able to
CO#	COURSE OUTCOME
20AIM45A.1	Describe the concepts of DataBase Management Systems
20AIM45A.2	Analyse the various database concepts using ER diagram
20AIM45A.3	Make use of Relational Database techniques for solving real world problems
20AIM45A.4	Construct database for the structured data by applying normalization techniques
20AIM45A.5	Design database for the unstructured data with effective documentation report as a team
20AIM45A.6	Demonstrate the databases used for big data

Mapping of Course Outcomes to Program Outcomes														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
20AIM45A.1	-	-	-	-	3	-	-	-	-	-	-	3	3	2
20AIM45A.2	-	3	-	-	3	-	-	-	-	-	-	3	3	2
20AIM45A.3	3	-	-	1	3	-	-	1	-	-	-	3	3	2
20AIM45A.4	3	-	1	1	3	ı	1	1	-	-	-	3	3	2
20AIM45A.5	3	-	-	1	3	-	-	1	3	3	-	3	3	2
20AIM45A.6	3	-	-	-	3	-	-	-	-	_	-	3	3	2
Co	Correlation levels: 1-Slight(Low) 2-Moderate(Medium) 3-Substantial(High)													

Module No	Module Contents	Hours	COs
1	Introduction to Databases: Definition of database, DBMS; Characteristics of Database approach; Advantages of using DBMS approach; when not to use a DBMS Database Concept and Architecture: Data models, schemas and instances; Data Abstraction; Three-schema architecture and data independence; Components of a DBMS - Database Designer- Database Administrator - Database Users. Introduction to Entity-Relationship Model: Entity Types, Attributes and Keys; Relationship types, Roles and Structural Constraints; Weak Entity Types; ER Diagrams, Naming Conventions and Design Issues; Relationship types of degree higher than two; Reduction of an E-R schema to relational Tables	10	CO1, CO2
2	Introduction to Logical Design and Relational Model: Domains, Attributes, Tuples, and Relations; Relational Model Constraints; Relational Database Schemas; SQL-1: Overview of SQL language; SQL Data Definition and Data Types; Schema change statements in SQL; Enforcing basic constraints in SQL; Basic structure of SQL queries	10	CO1, CO3

3	Joins; Logical connectives - AND, OR and NOT; Addition basic operations; Set operations; Aggregate function; Comparisons Involving NULL and Three-Valued Logic; SQL modification language; Select, Delete, Update clause SQL -2: Introduction to Nested Queries; Correlated Nested Queries; Introduction to Views: creation, implementation, update of views; Introduction to	7	CO1, CO2,
	Assertion and Trigger		CO3
4	Index Structures: Indexes on Sequential Files: dense, sparse index; multilevel indexing; Hash Based Indexing: Static Hashing and dynamic hashing. Database Refinement: Informal Design Guidelines for Relation Schemas; Functional Dependencies; Normalization on Relational Data Base:1NF,2NF,3NF, BCNF; Transaction Management: The ACID Properties; Transactions and Schedules	9	CO1, CO2, CO4
5	NOSQL Databases: What is NoSQL, Need of NOSQL, Features OF NOSQL, CAP Theorem, ACID v/s BASE, Advantages & Disadvantages of NOSQL, Types of NOSQL: Key-Value database- Document-based database- Column-based database- Graph based database. Introduction to Cassandra: Architecture, Gossip protocol, Snitches, Virtual Nodes, write consistency level and write process, read consistency level and read data operation, indexing, compaction, Anti-entropy, Tombstones	9	CO1, CO5, CO6

- 1. Ramez Elmasri and Shamkant B. Navathe: Fundamentals of Database Systems, 7th Edition, Pearson , 2016.
- 2. Abraham Silberschatz , Henry F. Korth , S. Sudarshan," Database System Concepts", 6th Edition,McGrawHill, 2011
- 3. Pramod J. Sadalage, Martin Fowler, "NoSQL Distilled", Pearson education Inc, Nov 2014

Reference Books:

- 1. Johannes Gehrke, Raghu Ramakrishnan, Database Management Systems 3rd Edition, McGraw Hill Education, 2014.
- 2. Shashank Tiwari, "Professional NoSQL", John Wiley & Sons, Inc, 2011

CIE- Continuous Internal Evaluation (50 Marks)

Bloom's Category	Tests (25 marks)	Assignments (15 marks)	Quizzes (10 marks)
Remember	5	-	-
Understand	5	-	5
Apply	10	7.5	5
Analyze	5	7.5	-
Evaluate	-	-	-
Create	-	-	-

Bloom's Category	Questions (50 marks)
Remember	10
Understand	10
Apply	20
Analyze	10
Evaluate	-
Create	-

OBJECT ORIENTED PROGRAMMING USING JAVA LAB

 Course Code
 : 20AIL46A
 Credits: 2

 L: T: P
 : 0: 0: 2
 CIE Marks: 25

 Exam Hours:
 : 3
 SEE Marks: 25

Course Outco	nes: At the end of the Course, the Student will be able to
CO#	COURSE OUTCOME
20AIL46A.1	Apply OOP concepts with basic Java constructs to solve the given problem.
20AIL46A.2	Analyze the output for the programs in Java.
20AIL46A.3	Conduct experiments as individual by using modern tools like JDK
20AIL46A.4	Prepare an effective report based on experiments

Mapping of Course Outcomes to Program Outcomes														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
20AIL46A.1	-	-	-	-	-	-	-	-	-	-	-	-	3	2
20AIL46A.2	3	-	-	-	-	-	-	-	-	-	-	-	3	2
20AIL46A.3	-	3	-	-	-	-	-	-	3	-	-	3	3	2
20AIL46A.4	-	-	-	-	-	-	-	-	3	3	-	-	3	2
C	Correlation levels: 1-Slight(Low) 2-Moderate(Medium) 3-Substantial(High)													

Ex. No	Experiments	Hours	COs
1.	Write a Java Program to demonstrate math class and arrays		CO1
2.	Write a Java Program to define a class, describe its		CO2
	constructor, overload the Constructors and instantiate its	4	CO3
	object, and use static members.		CO4
3.	Write a Java program to demonstrate String class, String		CO1
	Buffer class and its Methods		CO2
4.	Write a Java program to demonstrate nested classes and		CO3
	array of objects	4	CO4
5.	Write a Java Program to implement inheritance and		
	demonstrate use of method overriding		CO1
6.	Write a Java Program to implement multilevel inheritance		CO2
	by applying various access controls to its data members	4	CO3
	and methods		CO4
7.	Write a program to demonstrate use of implementing		CO1
	interfaces	4	CO2
8.	Write a program to demonstrate use of extending	4	CO3
	interfaces		CO4
9.	Write a Java program to implement the concept of		
	importing classes from user defined package and creating		CO1
	packages	4	CO2
	Write a Java Program to demonstrate dynamic binding,		CO ₃
	generic programming		CO4
10.	Write a program to implement the concept of threading by		

	extending Thread Class		
11.	Write a program to implement the concept of threading by implementing Runnable Interface		CO1
12.	Write a java program that implements a multi-thread application that has three threads. First thread generates random integer every 1 second and if the value is even, second thread computes the square of the number and prints .If the value is odd, the third thread will print the value of cube of the number	4	CO1 CO2 CO3 CO4
13.	Write a program to implement the concept to of Exception Handling using pre-defined exception	4	CO1 CO2
14.	Write a program to implement the concept of Exception Handling by creating user defined exceptions		CO3 CO4
15.	 a) Write a program to demonstrate File I/O Operations b) Write a program to demonstrate Array List Class, Linked List Class, Tree set Class 	2	CO1 CO2 CO3 CO4

- 1. Herbert Schildt, JavaTM: The Complete Reference, McGraw-Hill, Tenth Edition, 2018
- 2. Cay S. Horstmann, Core Java® SE 9 for the Impatient, Addison Wesley, Second Edition, 2018

CIE- Continuous Internal Evaluation (25 Marks)

Bloom's Category	Tests (25 marks)
Remember	-
Understand	5
Apply	15
Analyze	5
Evaluate	-
Create	-

Bloom's Category	Questions (50 marks)
Remember	-
Understand	5
Apply	15
Analyze	5
Evaluate	-
Create	-

DATABASE MAGAGEMENT SYSTEM LAB

 Course Code
 : 20AIL47A
 Credits: 2

 L: T: P
 : 0: 0: 2
 CIE Marks: 25

 Exam Hours:
 : 3
 SEE Marks: 25

Course Outco	omes:	At the end of the Course, the Student will be able to			
CO#	COUR	COURSE OUTCOME			
20AIL47A.1	Apply database management techniques to solve the problem				
20AIL47A.2	Analyse database for the given problem				
20AIL47A.3	Conduct experiments as individual by using MySQL/Oracle				
20AIL47A.4	Make a	n effective report based on experiments			

Mapping of Course Outcomes to Program Outcomes														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
20AIL47A.1	3	-	-	-	-	-	-	-	-	-	-	3	3	2
20AIL47A.2	-	3	1	1	-	-	-	-	1	-	-	3	3	2
20AIL47A.3	-	1	1	1	3	1	-	-	1	-	-	3	3	2
20AIL47A.4	-	1	1	1	-	-	-	-	1	3	-	3	3	2
C	Correlation levels: 1-Slight(Low) 2-Moderate(Medium) 3-Substantial(High)													

Ex. No	Experiments	Hours	COs
1.	Draw E-R diagram and convert entities and relationships to relation table for a given scenario. a. Two assignments shall be carried out i.e. consider two different scenarios (eg. bank, college)	3	CO1, CO2, CO3, CO4
2.	 Write relational algebra queries a. Viewing all databases, Creating a Database, b. Viewing all Tables in a Database, c. Creating Tables (With and Without Constraints), d. Inserting/Updating/Deleting e. Records in a Table, Saving (Commit) and Undoing (rollback) 	3	CO1, CO2, CO3, CO4
3.	Write relational algebra queries a. Altering a Table,b. Dropping/Truncating/Renaming Tables,c. Backing up / Restoring a Database.	3	CO1, CO2, CO3, CO4
4.	Consider the following database for student enrolment for course: STUDENT (snum: integer, sname: string, major: string, level: string, age: integer) CLASS (name: string, meets at: time, room: string, fid: integer) ENROLLED (snum: integer, cname: string) FACULTY (fid: integer, fname: string, deptid: integer) The meaning of these relations is straightforward; for example, Enrolled has one record per student-class pair such that the student is enrolled in the class. Level is a two character code with 4 different values (example: Junior: JR	3	CO1, CO2, CO3, CO4

	etc) Write the following queries in SQL. No duplicates should be printed in any of the answers. i. Find the names of all Juniors (level = JR) who are enrolled in a class taught by ii. Find the names of all classes that either meet in room R128 or have five or more Students enrolled. iii. Find the names of all students who are enrolled in two classes that meet at the same time. iv. Find the names of faculty members who teach in every room in which some class is taught. v. Find the names of faculty members for whom the combined enrolment of the courses that they teach is less than five. vi. Find the names of students who are not enrolled in any class. vii. For each age value that appears in Students, find the level value that appears most often. For example, if there		
	are more FR, level students aged 18 than SR, JR, or SO students aged 18, you should print the pair (18, FR).		
5.	Consider the following database that keeps track of airline flight information: FLIGHTS (flno: integer, from: string, to: string, distance: integer, departs: time, arrives: time, price: integer) AIRCRAFT (aid: integer, aname: string, cruisingrange: integer) CERTIFIED (eid: integer, aid: integer) EMPLOYEE (eid: integer, ename: string, salary: integer) Note that the Employees relation describes pilots and other kinds of employees as well; Every pilot is certified for some aircraft, and only pilots are certified to fly. Write each of the following queries in SQL. i. Find the names of aircraft such that all pilots certified to operate them have salaries more than Rs.80,000. ii. For each pilot who is certified for more than three aircrafts, find the eid and the maximum cruising range of the aircraft for which she or he is certified. iii. Find the names of pilots whose salary is less than the price of the cheapest route from Bengaluru to Frankfurt. iv. For all aircraft with cruising range over 1000 Kms, find the name of the aircraft and the average salary of all pilots certified for this aircraft. v. Find the names of pilots certified for some Boeing aircraft. vi. Find the aids of all aircraft that can be used on routes from Bengaluru to New Delhi. vii. A customer wants to travel from Madison to New York with no more than two changes of flight. List the choice of departure times from Madison if the customer wants to arrive in New York by 6 p.m.	3	CO1, CO2, CO3, CO4

	viii. Print the name and salary of every non-pilot whose		
6.	salary is more than the average salary for pilots. Consider the following relations for an Order Processing database application in a company. CUSTOMER (CUST #: int, cname: String, city: String) ORDER (order #: int, odate: date, cust #: int, ord-Amt: int) ITEM (item #: int, unit-price: int) ORDER-ITEM (order #: int, item #: int, qty: int) WAREHOUSE (warehouse #: int, city: String) SHIPMENT (order #: int, warehouse #: int, ship-date: date) i. Create the above tables by properly specifying the primary keys and the foreign keys and the foreign keys. ii. Enter at least five tuples for each relation. iii. Produce a listing: CUSTNAME, #of orders, AVG_ORDER_AMT, where the middle column is the total numbers of orders by the customer and the last column is the average order amount for that customer. iv. List the order# for orders that were shipped from all warehouses that the company has in a specific city. v. Demonstrate how you delete item# 10 from the ITEM table and make that field null in the ORDER_ITEM table.	3	CO1, CO2, CO3, CO4
7.	The following tables are maintained by a book dealer: AUTHOR(author-id: int, name: String, city: String, country: String) PUBLISHER(publisher-id: int, name: String, city: String, country: String) CATALOG (book-id: int, title: String, author-id: int, publisher-id: int, category-id: int, year: int, price: int) CATEGORY(category-id: int, description: String) ORDER-DETAILS(order-no: int, book-id: int, quantity: int) i. Create the above tables by properly specifying the primary keys and the foreign keys. ii. Enter at least five tuples for each relation. iii. Give the details of the authors who have 2 or more books in the catalog and the price of the books in the catalog and the year of publication is after 2000. iv. Find the author of the book, which has maximum sales. v. Demonstrate how you increase the price of books published by a specific publisher by 10%.	3	CO1, CO2, CO3, CO4
8.	Consider the following database of student enrollment in courses and books adopted for each course. STUDENT (regno: String, name: String, major: String, bdate: date) COURSE (course #: int, cname: String, dept: String) ENROLL (regno: String, cname: String, sem: int, marks: int) BOOK_ADOPTION (course #: int, sem: int, book-ISBN: int)	3	CO1, CO2, CO3, CO4

		1	T
	TEXT(book-ISBN:int, book-title:String, publisher:String, author:String) i. Create the above tables by properly specifying the primary keys and the foreign keys. ii. Enter at least five tuples for each relation. iii. Demonstrate how you add a new textbook to the database and make this book be adopted by some department. iv. Produce a list of textbooks (include Course #, Book-ISBN, Book-title) in the alphabetical order for courses offered by the 'AIML' department that use more than two books. v. List any department that has all its adopted books published by a specific publisher.		
9.	Consider the schema for Movie Database: ACTOR(Act_id, Act_Name, Act_Gender) DIRECTOR(Dir_id, Dir_Name, Dir_Phone) MOVIES(Mov_id, Mov_Title, Mov_Year, Mov_Lang, Dir_id) MOVIE_CAST(Act_id, Mov_id, Role) RATING(Mov_id, Rev_Stars) Write SQL queries to i. List the titles of all movies directed by 'Hitchcock'. ii. Find the movie names where one or more actors acted in two or more movies. iii. List all actors who acted in a movie before 2000 and in a movie after 2015 (use JOIN operation). iv. Find the title of movies and number of stars for each movie that has at least one rating and find the highest number of stars that movie received. Sort the result by movie title. v. Update rating of all movies directed by 'Steven Spielberg' to 5.	3	CO1, CO2, CO3, CO4
10.	Consider the schema for College Database: STUDENT(USN, SName, Address, Phone, Gender) SEMSEC(SSID, Sem, Sec) CLASS(USN, SSID) SUBJECT(Subcode, Title, Sem, Credits) IAMARKS(USN, Subcode, SSID, Test1, Test2, Test3, FinalIA) Write SQL queries to i. List all the student details studying in fourth semester 'C' section. ii. Compute the total number of male and female students in each semester and in each section. iii. Create a view of Test1 marks of student USN '1NH20AI101' in all subjects. iv. Calculate the FinalIA (average of best two test marks) and update the corresponding table for all students. v. Categorize students based on the following criterion:	3	CO1, CO2, CO3, CO4

If FinalIA = 17 to 20 then CAT = 'Outstanding'	
If FinalIA = 12 to 16 then CAT = 'Average'	
If FinalIA< 12 then CAT = 'Weak'	
Give these details only for 8th semester A, B, and C-	
section students.	

- 1. Ramez Elmasri and Shamkant B. Navathe: Fundamentals of Database Systems, 7th Edition, Pearson , 2016.
- 2. Abraham Silberschatz , Henry F. Korth , S. Sudarshan," Database System Concepts", 6th Edition,McGrawHill, 2011

CIE- Continuous Internal Evaluation (25 Marks)

Bloom's Category	Tests (25 marks)
Remember	-
Understand	5
Apply	15
Analyze	5
Evaluate	-
Create	-

Bloom's Category	Questions (50 marks)
Remember	-
Understand	5
Apply	15
Analyze	5
Evaluate	-
Create	-

MINI PROJECT - II

 Course Code
 : 20AIL48A
 Credits: 2

 L: T: P
 : 0: 0: 2
 CIE Marks: 25

 Exam Hours:
 : 3
 SEE Marks: 25

Course Outcomes: At the end of the Course, the Student will be able to					
CO#	COURSE OUTCOME				
20AIL48A.1	Illustrate the technological needs and/ or societal needs and sustainability of the				
20AIL-40A.1	enviror	ment			
20AIL48A.2	Design application using high level language				
20AIL48A.3	Analyse and evaluate the outcome of the project				
20AIL48A.4	Test, validate and communicate the identified solutions in a structured way.				

Mapping of Course Outcomes to Program Outcomes														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
20AIL48A.1	-	-	-	-	-	3	2	3	-	-	-	3	3	2
20AIL48A.2	-	-	3	-	3	-	-	-	-	-	-	3	3	2
20AIL48A.3	-	3	-	-	-	-	-	-	-	-	-	3	3	2
20AIL48A.4	-	-	-	3	-	-	-	-	3	3	3	3	3	2
C	Correlation levels: 1-Slight(Low) 2-Moderate(Medium) 3-Substantial(High)													

Each team capable of identifying a problem and carry out a mini project on the problem defined. A panel of experts will review the code developed towards the project during the course of the semester. Plagiarized projects will automatically get an "F" GRADE and the student will be liable for further disciplinary action. At the completion of a project, the team will submit a project report, which will be evaluate by duly appointed examiner(s).

CIE- Continuous Internal Evaluation (25 Marks)

Bloom's Category	Review (25marks)
Remember	-
Understand	-
Apply	10
Analyze	10
Evaluate	5
Create	-

Bloom's Category	Review (25marks)
Remember	-
Understand	-
Apply	10
Analyze	10
Evaluate	5
Create	-

APPENDIX A

Outcome Based Education


Outcome-based education (OBE) is an educational theory that bases each part of an educational system around goals (outcomes). By the end of the educational experience, each student should have achieved the goal. There is no specified style of teaching or assessment in OBE; instead, classes, opportunities, and assessments should all help students achieve the specified outcomes.

There are three educational Outcomes as defined by the National Board of Accreditation: Program Educational Objectives: The Educational objectives of an engineering degree program are the statements that describe the expected achievements of graduate in their career and in particular, what the graduates are expected to perform and achieve during the first few years after graduation. [nbaindia.org]

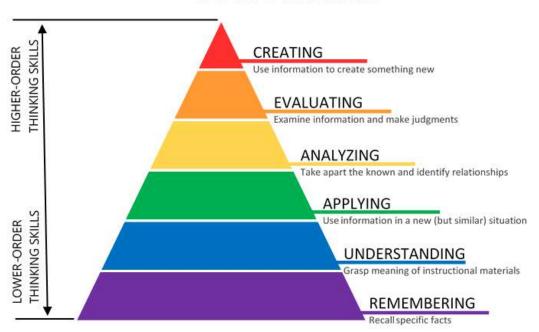
Program Outcomes: What the student would demonstrate upon graduation. Graduate attributes are separately listed in Appendix C

Course Outcome: The specific outcome/s of each course/subject that is a part of the program curriculum. Each subject/course is expected to have a set of Course Outcomes

Mapping of Outcome:

APPENDIX B

The Graduate Attributes of NBA


- **PO1** Engineering knowledge: Apply the knowledge of mathematics, science, Engineering fundamentals, and an Engineering specialization to the solution of complex Engineering problems in Computer Engineering.
- **PO2** Problem analysis: Identify, formulate, review research literature, and analyze complex Engineering problems in Computer Engineering reaching substantiated conclusions using first principles of mathematics, natural sciences, and Engineering sciences.
- **PO3 Design / Development of Solutions:** Design solutions for complex Engineering problems and design system components or processes of Computer Engineering that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations.
- **PO4** Conduct Investigations of Complex Problems: Use research based knowledge and research methods including design of experiments in Computer Engineering, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- **PO5** Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modeling to complex Engineering activities in Computer Engineering with an understanding of the limitations.
- **PO6** The Engineer and Society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice in Computer Engineering.
- **PO7** Environment and Sustainability: Understand the impact of the professional Engineering solutions of Computer Engineering in societal and Environmental contexts, demonstrate the knowledge of, and need for sustainable development.
- **PO8** Ethics: Apply ethical principles and commit to professional ethics, responsibilities, and norms of the Engineering practice.
- **PO9** Individual and Team Work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- **PO10** Communication Skills: Communicate effectively on complex Engineering activities with the Engineering community and with society, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- **PO11** Project Management and Finance: Demonstrate knowledge and understanding of the Engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary Environments.
- **PO12 Life-long Learning:** Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

APPENDIX C

BLOOM'S TAXONOMY

Bloom's taxonomy is a classification system used to define and distinguish different levels of human cognition—i.e., thinking, learning, and understanding. Educators have typically used Bloom's taxonomy to inform or guide the development of assessments (tests and other evaluations of student learning), curriculum (units, lessons, projects, and other learning activities), and instructional methods such as questioning strategies.

BLOOM'S TAXOMONY

